diff --git a/fastNLP/core/loss.py b/fastNLP/core/loss.py index ce388989..093b3b96 100644 --- a/fastNLP/core/loss.py +++ b/fastNLP/core/loss.py @@ -5,7 +5,7 @@ def squash(predict , truth , **kwargs): :param predict : Tensor, model output :param truth : Tensor, truth from dataset - :param **kwargs : extract arguments + :param **kwargs : extra arguments :return predict , truth: predict & truth after processing ''' @@ -18,8 +18,8 @@ def unpad(predict , truth , **kwargs): :param predict : Tensor, [batch_size , max_len , tag_size] :param truth : Tensor, [batch_size , max_len] - :param **kwargs : extract arguments, kwargs["lens"] is expected to be exsist - arg["lens"] : list or LongTensor, [batch_size] + :param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist + kwargs["lens"] : list or LongTensor, [batch_size] the i-th element is true lengths of i-th sequence :return predict , truth: predict & truth after processing @@ -39,8 +39,8 @@ def unpad_mask(predict , truth , **kwargs): :param predict : Tensor, [batch_size , max_len , tag_size] :param truth : Tensor, [batch_size , max_len] - :param **kwargs : extract arguments, kwargs["lens"] is expected to be exsist - arg["lens"] : list or LongTensor, [batch_size] + :param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist + kwargs["lens"] : list or LongTensor, [batch_size] the i-th element is true lengths of i-th sequence :return predict , truth: predict & truth after processing @@ -56,8 +56,8 @@ def mask(predict , truth , **kwargs): :param predict : Tensor, [batch_size , max_len , tag_size] :param truth : Tensor, [batch_size , max_len] - :param **kwargs : extract arguments, kwargs["mask"] is expected to be exsist - arg["mask"] : ByteTensor, [batch_size , max_len] + :param **kwargs : extra arguments, kwargs["mask"] is expected to be exsist + kwargs["mask"] : ByteTensor, [batch_size , max_len] the mask Tensor , the position that is 1 will be selected :return predict , truth: predict & truth after processing @@ -112,7 +112,6 @@ loss_function_name = { "MarginRankingLoss".lower() : torch.nn.MarginRankingLoss, "TripletMarginLoss".lower() : torch.nn.TripletMarginLoss, "HingeEmbeddingLoss".lower() : torch.nn.HingeEmbeddingLoss, - "HingeEmbeddingLoss".lower() : torch.nn.HingeEmbeddingLoss, "CosineEmbeddingLoss".lower() : torch.nn.CosineEmbeddingLoss, "MultiLabelMarginLoss".lower() : torch.nn.MultiLabelMarginLoss, "MultiLabelSoftMarginLoss".lower() : torch.nn.MultiLabelSoftMarginLoss, @@ -132,7 +131,7 @@ class Loss(object): pre_pro funcsions should have three arguments: predict, truth, **arg predict and truth is the necessary parameters in loss function - arg is the extra parameters passed-in when calling loss function + kwargs is the extra parameters passed-in when calling loss function pre_pro functions should return two objects, respectively predict and truth that after processed '''