| @@ -0,0 +1,36 @@ | |||||
| ## Introduction | |||||
| This is the implementation of [Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf) paper in PyTorch. | |||||
| * Dataset is 600k documents extracted from [Yelp 2018](https://www.yelp.com/dataset) customer reviews | |||||
| * Use [NLTK](http://www.nltk.org/) and [Stanford CoreNLP](https://stanfordnlp.github.io/CoreNLP/) to tokenize documents and sentences | |||||
| * Both CPU & GPU support | |||||
| * The best accuracy is 71%, reaching the same performance in the paper | |||||
| ## Requirement | |||||
| * python 3.6 | |||||
| * pytorch = 0.3.0 | |||||
| * numpy | |||||
| * gensim | |||||
| * nltk | |||||
| * coreNLP | |||||
| ## Parameters | |||||
| According to the paper and experiment, I set model parameters: | |||||
| |word embedding dimension|GRU hidden size|GRU layer|word/sentence context vector dimension| | |||||
| |---|---|---|---| | |||||
| |200|50|1|100| | |||||
| And the training parameters: | |||||
| |Epoch|learning rate|momentum|batch size| | |||||
| |---|---|---|---| | |||||
| |3|0.01|0.9|64| | |||||
| ## Run | |||||
| 1. Prepare dataset. Download the [data set](https://www.yelp.com/dataset), and unzip the custom reviews as a file. Use preprocess.py to transform file into data set foe model input. | |||||
| 2. Train the model. Word enbedding of train data in 'yelp.word2vec'. The model will trained and autosaved in 'model.dict' | |||||
| ``` | |||||
| python train | |||||
| ``` | |||||
| 3. Test the model. | |||||
| ``` | |||||
| python evaluate | |||||
| ``` | |||||
| @@ -0,0 +1,44 @@ | |||||
| from model import * | |||||
| from train import * | |||||
| def evaluate(net, dataset, bactch_size=64, use_cuda=False): | |||||
| dataloader = DataLoader(dataset, batch_size=bactch_size, collate_fn=collate, num_workers=0) | |||||
| count = 0 | |||||
| if use_cuda: | |||||
| net.cuda() | |||||
| for i, batch_samples in enumerate(dataloader): | |||||
| x, y = batch_samples | |||||
| doc_list = [] | |||||
| for sample in x: | |||||
| doc = [] | |||||
| for sent_vec in sample: | |||||
| if use_cuda: | |||||
| sent_vec = sent_vec.cuda() | |||||
| doc.append(Variable(sent_vec, volatile=True)) | |||||
| doc_list.append(pack_sequence(doc)) | |||||
| if use_cuda: | |||||
| y = y.cuda() | |||||
| predicts = net(doc_list) | |||||
| p, idx = torch.max(predicts, dim=1) | |||||
| idx = idx.data | |||||
| count += torch.sum(torch.eq(idx, y)) | |||||
| return count | |||||
| if __name__ == '__main__': | |||||
| ''' | |||||
| Evaluate the performance of model | |||||
| ''' | |||||
| from gensim.models import Word2Vec | |||||
| import gensim | |||||
| from gensim import models | |||||
| embed_model = Word2Vec.load('yelp.word2vec') | |||||
| embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size) | |||||
| del embed_model | |||||
| net = HAN(input_size=200, output_size=5, | |||||
| word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||||
| sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) | |||||
| net.load_state_dict(torch.load('model.dict')) | |||||
| test_dataset = YelpDocSet('reviews', 199, 4, embedding) | |||||
| correct = evaluate(net, test_dataset, True) | |||||
| print('accuracy {}'.format(correct/len(test_dataset))) | |||||
| @@ -0,0 +1,110 @@ | |||||
| import torch | |||||
| import torch.nn as nn | |||||
| from torch.autograd import Variable | |||||
| import torch.nn.functional as F | |||||
| def pack_sequence(tensor_seq, padding_value=0.0): | |||||
| if len(tensor_seq) <= 0: | |||||
| return | |||||
| length = [v.size(0) for v in tensor_seq] | |||||
| max_len = max(length) | |||||
| size = [len(tensor_seq), max_len] | |||||
| size.extend(list(tensor_seq[0].size()[1:])) | |||||
| ans = torch.Tensor(*size).fill_(padding_value) | |||||
| if tensor_seq[0].data.is_cuda: | |||||
| ans = ans.cuda() | |||||
| ans = Variable(ans) | |||||
| for i, v in enumerate(tensor_seq): | |||||
| ans[i, :length[i], :] = v | |||||
| return ans | |||||
| class HAN(nn.Module): | |||||
| def __init__(self, input_size, output_size, | |||||
| word_hidden_size, word_num_layers, word_context_size, | |||||
| sent_hidden_size, sent_num_layers, sent_context_size): | |||||
| super(HAN, self).__init__() | |||||
| self.word_layer = AttentionNet(input_size, | |||||
| word_hidden_size, | |||||
| word_num_layers, | |||||
| word_context_size) | |||||
| self.sent_layer = AttentionNet(2* word_hidden_size, | |||||
| sent_hidden_size, | |||||
| sent_num_layers, | |||||
| sent_context_size) | |||||
| self.output_layer = nn.Linear(2* sent_hidden_size, output_size) | |||||
| self.softmax = nn.LogSoftmax(dim=1) | |||||
| def forward(self, batch_doc): | |||||
| # input is a sequence of matrix | |||||
| doc_vec_list = [] | |||||
| for doc in batch_doc: | |||||
| sent_mat = self.word_layer(doc) # doc's dim (num_sent, seq_len, word_dim) | |||||
| doc_vec_list.append(sent_mat) # sent_mat's dim (num_sent, vec_dim) | |||||
| doc_vec = self.sent_layer(pack_sequence(doc_vec_list)) | |||||
| output = self.softmax(self.output_layer(doc_vec)) | |||||
| return output | |||||
| class AttentionNet(nn.Module): | |||||
| def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size): | |||||
| super(AttentionNet, self).__init__() | |||||
| self.input_size = input_size | |||||
| self.gru_hidden_size = gru_hidden_size | |||||
| self.gru_num_layers = gru_num_layers | |||||
| self.context_vec_size = context_vec_size | |||||
| # Encoder | |||||
| self.gru = nn.GRU(input_size=input_size, | |||||
| hidden_size=gru_hidden_size, | |||||
| num_layers=gru_num_layers, | |||||
| batch_first=True, | |||||
| bidirectional=True) | |||||
| # Attention | |||||
| self.fc = nn.Linear(2* gru_hidden_size, context_vec_size) | |||||
| self.tanh = nn.Tanh() | |||||
| self.softmax = nn.Softmax(dim=1) | |||||
| # context vector | |||||
| self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1)) | |||||
| self.context_vec.data.uniform_(-0.1, 0.1) | |||||
| def forward(self, inputs): | |||||
| # GRU part | |||||
| h_t, hidden = self.gru(inputs) # inputs's dim (batch_size, seq_len, word_dim) | |||||
| u = self.tanh(self.fc(h_t)) | |||||
| # Attention part | |||||
| alpha = self.softmax(torch.matmul(u, self.context_vec)) # u's dim (batch_size, seq_len, context_vec_size) | |||||
| output = torch.bmm(torch.transpose(h_t, 1, 2), alpha) # alpha's dim (batch_size, seq_len, 1) | |||||
| return torch.squeeze(output, dim=2) # output's dim (batch_size, 2*hidden_size, 1) | |||||
| if __name__ == '__main__': | |||||
| ''' | |||||
| Test the model correctness | |||||
| ''' | |||||
| import numpy as np | |||||
| use_cuda = True | |||||
| net = HAN(input_size=200, output_size=5, | |||||
| word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||||
| sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) | |||||
| optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |||||
| criterion = nn.NLLLoss() | |||||
| test_time = 10 | |||||
| batch_size = 64 | |||||
| if use_cuda: | |||||
| net.cuda() | |||||
| print('test training') | |||||
| for step in range(test_time): | |||||
| x_data = [torch.randn(np.random.randint(1,10), 200, 200) for i in range(batch_size)] | |||||
| y_data = torch.LongTensor([np.random.randint(0, 5) for i in range(batch_size)]) | |||||
| if use_cuda: | |||||
| x_data = [x_i.cuda() for x_i in x_data] | |||||
| y_data = y_data.cuda() | |||||
| x = [Variable(x_i) for x_i in x_data] | |||||
| y = Variable(y_data) | |||||
| predict = net(x) | |||||
| loss = criterion(predict, y) | |||||
| optimizer.zero_grad() | |||||
| loss.backward() | |||||
| optimizer.step() | |||||
| print(loss.data[0]) | |||||
| @@ -0,0 +1,51 @@ | |||||
| '''' | |||||
| Tokenize yelp dataset's documents using stanford core nlp | |||||
| ''' | |||||
| import pickle | |||||
| import json | |||||
| import nltk | |||||
| from nltk.tokenize import stanford | |||||
| import os | |||||
| input_filename = 'review.json' | |||||
| # config for stanford core nlp | |||||
| os.environ['JAVAHOME'] = 'D:\\java\\bin\\java.exe' | |||||
| path_to_jar = 'E:\\College\\fudanNLP\\stanford-corenlp-full-2018-02-27\\stanford-corenlp-3.9.1.jar' | |||||
| tokenizer = stanford.CoreNLPTokenizer() | |||||
| in_dirname = 'review' | |||||
| out_dirname = 'reviews' | |||||
| f = open(input_filename, encoding='utf-8') | |||||
| samples = [] | |||||
| j = 0 | |||||
| for i, line in enumerate(f.readlines()): | |||||
| review = json.loads(line) | |||||
| samples.append((review['stars'], review['text'])) | |||||
| if (i+1) % 5000 == 0: | |||||
| print(i) | |||||
| pickle.dump(samples, open(in_dirname + '/samples%d.pkl'%j, 'wb')) | |||||
| j += 1 | |||||
| samples = [] | |||||
| pickle.dump(samples, open(in_dirname + '/samples%d.pkl'%j, 'wb')) | |||||
| # samples = pickle.load(open(out_dirname + '/samples0.pkl', 'rb')) | |||||
| # print(samples[0]) | |||||
| for fn in os.listdir(in_dirname): | |||||
| print(fn) | |||||
| precessed = [] | |||||
| for stars, text in pickle.load(open(os.path.join(in_dirname, fn), 'rb')): | |||||
| tokens = [] | |||||
| sents = nltk.tokenize.sent_tokenize(text) | |||||
| for s in sents: | |||||
| tokens.append(tokenizer.tokenize(s)) | |||||
| precessed.append((stars, tokens)) | |||||
| # print(tokens) | |||||
| if len(precessed) % 100 == 0: | |||||
| print(len(precessed)) | |||||
| pickle.dump(precessed, open(os.path.join(out_dirname, fn), 'wb')) | |||||
| @@ -0,0 +1,167 @@ | |||||
| import os | |||||
| import pickle | |||||
| import nltk | |||||
| import numpy as np | |||||
| import torch | |||||
| from model import * | |||||
| class SentIter: | |||||
| def __init__(self, dirname, count): | |||||
| self.dirname = dirname | |||||
| self.count = int(count) | |||||
| def __iter__(self): | |||||
| for f in os.listdir(self.dirname)[:self.count]: | |||||
| with open(os.path.join(self.dirname, f), 'rb') as f: | |||||
| for y, x in pickle.load(f): | |||||
| for sent in x: | |||||
| yield sent | |||||
| def train_word_vec(): | |||||
| # load data | |||||
| dirname = 'reviews' | |||||
| sents = SentIter(dirname, 238) | |||||
| # define model and train | |||||
| model = models.Word2Vec(size=200, sg=0, workers=4, min_count=5) | |||||
| model.build_vocab(sents) | |||||
| model.train(sents, total_examples=model.corpus_count, epochs=10) | |||||
| model.save('yelp.word2vec') | |||||
| print(model.wv.similarity('woman', 'man')) | |||||
| print(model.wv.similarity('nice', 'awful')) | |||||
| class Embedding_layer: | |||||
| def __init__(self, wv, vector_size): | |||||
| self.wv = wv | |||||
| self.vector_size = vector_size | |||||
| def get_vec(self, w): | |||||
| try: | |||||
| v = self.wv[w] | |||||
| except KeyError as e: | |||||
| v = np.random.randn(self.vector_size) | |||||
| return v | |||||
| from torch.utils.data import DataLoader, Dataset | |||||
| class YelpDocSet(Dataset): | |||||
| def __init__(self, dirname, start_file, num_files, embedding): | |||||
| self.dirname = dirname | |||||
| self.num_files = num_files | |||||
| self._files = os.listdir(dirname)[start_file:start_file + num_files] | |||||
| self.embedding = embedding | |||||
| self._cache = [(-1, None) for i in range(5)] | |||||
| def get_doc(self, n): | |||||
| file_id = n // 5000 | |||||
| idx = file_id % 5 | |||||
| if self._cache[idx][0] != file_id: | |||||
| with open(os.path.join(self.dirname, self._files[file_id]), 'rb') as f: | |||||
| self._cache[idx] = (file_id, pickle.load(f)) | |||||
| y, x = self._cache[idx][1][n % 5000] | |||||
| sents = [] | |||||
| for s_list in x: | |||||
| sents.append(' '.join(s_list)) | |||||
| x = '\n'.join(sents) | |||||
| return x, y-1 | |||||
| def __len__(self): | |||||
| return len(self._files)*5000 | |||||
| def __getitem__(self, n): | |||||
| file_id = n // 5000 | |||||
| idx = file_id % 5 | |||||
| if self._cache[idx][0] != file_id: | |||||
| print('load {} to {}'.format(file_id, idx)) | |||||
| with open(os.path.join(self.dirname, self._files[file_id]), 'rb') as f: | |||||
| self._cache[idx] = (file_id, pickle.load(f)) | |||||
| y, x = self._cache[idx][1][n % 5000] | |||||
| doc = [] | |||||
| for sent in x: | |||||
| if len(sent) == 0: | |||||
| continue | |||||
| sent_vec = [] | |||||
| for word in sent: | |||||
| vec = self.embedding.get_vec(word) | |||||
| sent_vec.append(vec.tolist()) | |||||
| sent_vec = torch.Tensor(sent_vec) | |||||
| doc.append(sent_vec) | |||||
| if len(doc) == 0: | |||||
| doc = [torch.zeros(1,200)] | |||||
| return doc, y-1 | |||||
| def collate(iterable): | |||||
| y_list = [] | |||||
| x_list = [] | |||||
| for x, y in iterable: | |||||
| y_list.append(y) | |||||
| x_list.append(x) | |||||
| return x_list, torch.LongTensor(y_list) | |||||
| def train(net, dataset, num_epoch, batch_size, print_size=10, use_cuda=False): | |||||
| optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |||||
| criterion = nn.NLLLoss() | |||||
| dataloader = DataLoader(dataset, | |||||
| batch_size=batch_size, | |||||
| collate_fn=collate, | |||||
| num_workers=0) | |||||
| running_loss = 0.0 | |||||
| if use_cuda: | |||||
| net.cuda() | |||||
| print('start training') | |||||
| for epoch in range(num_epoch): | |||||
| for i, batch_samples in enumerate(dataloader): | |||||
| x, y = batch_samples | |||||
| doc_list = [] | |||||
| for sample in x: | |||||
| doc = [] | |||||
| for sent_vec in sample: | |||||
| if use_cuda: | |||||
| sent_vec = sent_vec.cuda() | |||||
| doc.append(Variable(sent_vec)) | |||||
| doc_list.append(pack_sequence(doc)) | |||||
| if use_cuda: | |||||
| y = y.cuda() | |||||
| y = Variable(y) | |||||
| predict = net(doc_list) | |||||
| loss = criterion(predict, y) | |||||
| optimizer.zero_grad() | |||||
| loss.backward() | |||||
| optimizer.step() | |||||
| running_loss += loss.data[0] | |||||
| if i % print_size == print_size-1: | |||||
| print('{}, {}'.format(i+1, running_loss/print_size)) | |||||
| running_loss = 0.0 | |||||
| torch.save(net.state_dict(), 'model.dict') | |||||
| torch.save(net.state_dict(), 'model.dict') | |||||
| if __name__ == '__main__': | |||||
| ''' | |||||
| Train process | |||||
| ''' | |||||
| from gensim.models import Word2Vec | |||||
| import gensim | |||||
| from gensim import models | |||||
| train_word_vec() | |||||
| embed_model = Word2Vec.load('yelp.word2vec') | |||||
| embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size) | |||||
| del embed_model | |||||
| start_file = 0 | |||||
| dataset = YelpDocSet('reviews', start_file, 120-start_file, embedding) | |||||
| print('training data size {}'.format(len(dataset))) | |||||
| net = HAN(input_size=200, output_size=5, | |||||
| word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||||
| sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) | |||||
| try: | |||||
| net.load_state_dict(torch.load('model.dict')) | |||||
| print("last time trained model has loaded") | |||||
| except Exception: | |||||
| print("cannot load model, train the inital model") | |||||
| train(net, dataset, num_epoch=5, batch_size=64, use_cuda=True) | |||||