@@ -10,7 +10,8 @@ __all__ = [ | |||
'ProgressCallback', | |||
'RichCallback', | |||
"LRSchedCallback", | |||
'LoadBestModelCallback' | |||
'LoadBestModelCallback', | |||
"EarlyStopCallback" | |||
] | |||
@@ -21,4 +22,5 @@ from .checkpoint_callback import ModelCheckpointCallback, TrainerCheckpointCallb | |||
from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback | |||
from .lr_scheduler_callback import LRSchedCallback | |||
from .load_best_model_callback import LoadBestModelCallback | |||
from .early_stop_callback import EarlyStopCallback | |||
@@ -1,11 +1,15 @@ | |||
from typing import Union, Callable, Dict, Optional | |||
from typing import Union, Callable, Dict, Optional, Any | |||
from abc import ABC | |||
__all__ = [ | |||
'Callback', | |||
] | |||
from .callback_events import Events, EventsList, Filter | |||
from .utils import _get_monitor_value | |||
from fastNLP.core.callbacks.callback_events import _SingleEventState | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.utils import apply_to_collection | |||
class Callback: | |||
@@ -150,4 +154,82 @@ class _CallbackWrapper(Callback): | |||
return self.fn.__name__ | |||
class CanItemDataType(ABC): | |||
""" | |||
检测可以进行传输的对象。 | |||
""" | |||
@classmethod | |||
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: | |||
if cls is CanItemDataType: | |||
item = getattr(subclass, 'item', None) | |||
return callable(item) | |||
return NotImplemented | |||
class HasMonitorCallback(Callback): | |||
def __init__(self, monitor, larger_better, must_have_monitor=False): | |||
self.set_monitor(monitor, larger_better) | |||
self.must_have_moinitor = must_have_monitor | |||
def set_monitor(self, monitor, larger_better): | |||
self.monitor = str(monitor) if monitor is not None else None | |||
self.larger_better = bool(larger_better) | |||
if larger_better: | |||
self.monitor_value = float('-inf') | |||
else: | |||
self.monitor_value = float('inf') | |||
self._real_monitor = self.monitor | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
""" | |||
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。 | |||
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。 | |||
:param trainer: | |||
:param driver: | |||
:return: | |||
""" | |||
if self.monitor is None and trainer.monitor is not None: | |||
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better) | |||
if self.must_have_moinitor and self.monitor is None: | |||
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. " | |||
f"You can set it in the initialization or through Trainer.") | |||
def get_monitor_value(self, results:Dict)->float: | |||
""" | |||
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。 | |||
:param results: | |||
:return: | |||
""" | |||
if len(results)==0: | |||
return 0 | |||
# 保证所有的 tensor 都被转换为了 python 特定的类型 | |||
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item()) | |||
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=results) | |||
if self._real_monitor != use_monitor: # 发生了替换需要打印 | |||
logger.warning( | |||
f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), " | |||
f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.") | |||
self._real_monitor = use_monitor | |||
return monitor_value | |||
def is_better_monitor_value(self, monitor_value: float, keep_if_better=True): | |||
""" | |||
检测 monitor_value 是否是更好的 | |||
:param monitor_value: | |||
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。 | |||
:return: | |||
""" | |||
better = False | |||
if (self.larger_better and monitor_value > self.monitor_value) or \ | |||
(not self.larger_better and monitor_value < self.monitor_value): | |||
better = True | |||
if keep_if_better: | |||
self.monitor_value = monitor_value | |||
return better |
@@ -5,12 +5,12 @@ __all__ = [ | |||
import os | |||
from typing import Union, Optional, Callable, Dict, Sequence, Any, Mapping | |||
from pathlib import Path | |||
from abc import ABC | |||
import sys | |||
from copy import deepcopy | |||
import fastNLP | |||
from .callback import Callback, Filter | |||
from .callback import Callback, HasMonitorCallback | |||
from fastNLP.core.callbacks.utils import _get_monitor_value | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs import FASTNLP_LAUNCH_TIME | |||
@@ -18,22 +18,7 @@ from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir | |||
from fastNLP.core.utils import apply_to_collection | |||
class CanItemDataType(ABC): | |||
""" | |||
检测可以进行传输的对象。 | |||
""" | |||
@classmethod | |||
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: | |||
if cls is CanItemDataType: | |||
item = getattr(subclass, 'item', None) | |||
return callable(item) | |||
return NotImplemented | |||
class CheckpointCallback(Callback): | |||
class CheckpointCallback(HasMonitorCallback): | |||
def __init__( | |||
self, | |||
monitor, | |||
@@ -48,13 +33,8 @@ class CheckpointCallback(Callback): | |||
model_save_fn: Optional[Callable] = None, | |||
**kwargs, | |||
): | |||
# 我们新加了逻辑,如果 checkpoint callback 自己没有设置 monitor 和 larger_better,那么我们会将其在 trainer 中的设置赋值给它们; | |||
# if monitor is None and save_topk is not None: | |||
# raise ValueError("Parameter `monitor` must be set when you want to use 'save_topk'.") | |||
if monitor is not None and not isinstance(monitor, str): | |||
raise ValueError("Parameter `monitor` should be of 'str' type.") | |||
super().__init__(monitor=monitor, larger_better=larger_better, | |||
must_have_monitor=save_topk is not None) | |||
if save_folder is None: | |||
logger.warning( | |||
"Parameter `path` is None, and we will use the current work directory to find and load your model.") | |||
@@ -92,13 +72,12 @@ class CheckpointCallback(Callback): | |||
"`BaseException` type.") | |||
else: | |||
save_on_exception = [] | |||
self.monitor = monitor | |||
self.save_folder = Path(save_folder) | |||
self.save_every_n_epochs = save_every_n_epochs | |||
self.save_every_n_batches = save_every_n_batches | |||
self.save_last = save_last | |||
self.save_topk = save_topk | |||
self.larger_better = larger_better | |||
self.only_state_dict = only_state_dict | |||
self.model_save_fn = model_save_fn | |||
self.save_on_exception = save_on_exception | |||
@@ -108,12 +87,6 @@ class CheckpointCallback(Callback): | |||
self._topk_model = {} | |||
self._topn = 0 # 表示目前已经保存了几个最好的模型; | |||
# 因为我们在 `_get_validate_metric` 函数中,当在返回的 `validate_res` 字典中找不到 `monitor` 时,是使用匹配找到的 | |||
# key 对应的 value 当做结果;但是这样存在的一个问题在于如果用户传入的 metric 返回的 sub_metric 的名字可能会混淆,并且其在下一次 | |||
# 训练的代码中修改了这些 sub_metric 返回的顺序,那么就会导致模糊匹配拿到的 key 和 value 与之前的不是同一个,这显然不是合理的行为; | |||
# 因此我们通过该变量来表示我们通过模糊匹配拿到的 key; | |||
self._real_monitor = self.monitor | |||
# 注意这里应当保证只有进程 0 在执行这个操作,因为当用户使用 python -m torch.distributed.launch 来拉起进程的时候, | |||
# FASTNLP_LAUNCH_TIME 在每一个进程上的值是不一样的; | |||
self.timestamp_path = self.save_folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME]) | |||
@@ -121,20 +94,15 @@ class CheckpointCallback(Callback): | |||
synchronize_mkdir(self.timestamp_path) | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
if self.monitor is None: | |||
if trainer.monitor is not None: | |||
self.monitor = trainer.monitor | |||
self.larger_better = trainer.larger_better | |||
elif self.save_topk is not None: | |||
raise RuntimeError("You are using `topk` mode, but you have not set the `monitor` value either in this" | |||
"callback or in trainer.") | |||
else: | |||
self.monitor = None | |||
if self.save_topk is not None: | |||
super().on_after_trainer_initialized(trainer, driver) | |||
if self.save_topk is not None and trainer.evaluator is None: | |||
raise RuntimeError("You are using `topk` mode, but there is no `evaluator` in trainer.") | |||
logger.warning("You set `save_topk`, but `validate_dataloaders` is not set in Trainer.") | |||
def on_validate_end(self, trainer, validate_res): | |||
self._save_topk(trainer, validate_res) | |||
def on_validate_end(self, trainer, results): | |||
if len(results) == 0: | |||
return | |||
self._save_topk(trainer, results) | |||
def on_train_epoch_end(self, trainer: "fastNLP.Trainer"): | |||
if trainer.cur_epoch_idx % self.save_every_n_epochs == 0: | |||
@@ -157,7 +125,7 @@ class CheckpointCallback(Callback): | |||
def on_sanity_check_end(self, trainer, sanity_check_res): | |||
# 主要核对一下 monitor 是否存在。 | |||
self._get_validate_metric(sanity_check_res) | |||
self.get_monitor_value(results=sanity_check_res) | |||
def on_save_checkpoint(self, trainer) -> Dict: | |||
""" | |||
@@ -168,8 +136,7 @@ class CheckpointCallback(Callback): | |||
states = {} | |||
states['timestamp_path'] = str(self.timestamp_path.absolute()) | |||
states['_topk_model'] = apply_to_collection(self._topk_model, dtype=CanItemDataType, | |||
function=lambda x:x.item()) | |||
states['_topk_model'] = deepcopy(self._topk_model) | |||
states['save_topk'] = 0 if self.save_topk is None else self.save_topk | |||
states['_real_monitor'] = self._real_monitor | |||
return states | |||
@@ -190,30 +157,30 @@ class CheckpointCallback(Callback): | |||
self._topk_model.update(self._topk_model) | |||
self._real_monitor = states["real_monitor"] | |||
def _save_topk(self, trainer: "fastNLP.Trainer", validate_res: Dict): | |||
def _save_topk(self, trainer: "fastNLP.Trainer", results: Dict): | |||
""" | |||
根据validate_res决定保存哪些model的函数。会自动移除掉不满足topk的文件夹。 | |||
:param trainer: | |||
:param validate_res: | |||
:param results: | |||
:return: | |||
""" | |||
if self.save_topk is not None: | |||
_metric_value = self._get_validate_metric(validate_res) | |||
monitor_value = self.get_monitor_value(results=results) | |||
folder_name = f"{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}" \ | |||
f"-{self._real_monitor}_{_metric_value}" | |||
f"-{self._real_monitor}_{monitor_value}" | |||
_should_save = False | |||
if self._topn < self.save_topk: | |||
self._topk_model[folder_name] = _metric_value | |||
self._topk_model[folder_name] = monitor_value | |||
self._topn += 1 | |||
_should_save = True | |||
else: | |||
_least_valuable_model = (min if self.larger_better else max)(self._topk_model, | |||
key=lambda x: self._topk_model[x]) | |||
if (self.larger_better and _metric_value > self._topk_model[_least_valuable_model]) or \ | |||
(self.larger_better is False and _metric_value < self._topk_model[_least_valuable_model]): | |||
self._topk_model[folder_name] = _metric_value | |||
if (self.larger_better and monitor_value > self._topk_model[_least_valuable_model]) or \ | |||
(self.larger_better is False and monitor_value < self._topk_model[_least_valuable_model]): | |||
self._topk_model[folder_name] = monitor_value | |||
_should_save = True | |||
self._topk_model.pop(_least_valuable_model) | |||
synchronize_safe_rm(self.timestamp_path.joinpath(_least_valuable_model)) | |||
@@ -249,7 +216,11 @@ class CheckpointCallback(Callback): | |||
:return: | |||
""" | |||
use_monitor, value = _get_monitor_value(monitor=self.monitor, real_monitor=self._real_monitor, res=res) | |||
if self._real_monitor != use_monitor: | |||
logger.warning(f"We can not find `{self._real_monitor}` in the evaluation result (with keys as {list(res.keys())}), " | |||
f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.") | |||
self._real_monitor = use_monitor | |||
return value | |||
@property | |||
@@ -277,7 +248,7 @@ class ModelCheckpointCallback(CheckpointCallback): | |||
若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 不在该 folder 下创建任何文件。 | |||
:param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。 | |||
的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。 | |||
:param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的 | |||
时间戳文件夹中。如果为 None ,默认使用当前文件夹。 | |||
:param save_every_n_epochs: 多少个 epoch 保存一次。 | |||
@@ -324,7 +295,7 @@ class TrainerCheckpointCallback(CheckpointCallback): | |||
若 model_save_fn 不为 None,则 fastNLP 只会在每个 folder 下生成 fastnlp_trainer.pkl.tar 文件。 | |||
:param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。 | |||
的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。 | |||
:param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的 | |||
时间戳文件夹中。如果为 None ,默认使用当前文件夹。 | |||
:param save_every_n_epochs: 多少个 epoch 保存一次。 | |||
@@ -0,0 +1,61 @@ | |||
__all__ = [ | |||
'EarlyStopCallback' | |||
] | |||
from typing import Dict | |||
from .callback import HasMonitorCallback | |||
from fastNLP.core.utils.exceptions import EarlyStopException | |||
class EarlyStopCallback(HasMonitorCallback): | |||
def __init__(self, monitor:str=None, larger_better:bool=True, patience:int=10): | |||
""" | |||
:param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。 | |||
:param larger_better: monitor 的值是否是越大越好。 | |||
:param patience: 多少次 validate 不没有提升就停止。 | |||
""" | |||
super(EarlyStopCallback, self).__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True) | |||
self.wait = 0 | |||
self.patience = patience | |||
def on_validate_end(self, trainer, results): | |||
if len(results)==0: | |||
return | |||
monitor_value = self.get_monitor_value(results) | |||
if self.is_better_monitor_value(monitor_value, keep_if_better=True): | |||
self.wait = 0 | |||
else: | |||
self.wait += 1 | |||
def on_fetch_data_begin(self, trainer): | |||
# 当是 step validate 的时候,下一步执行的就是这个, 所以在这里检查。 | |||
if self.wait >= self.patience: | |||
raise EarlyStopException(f"After {self.wait} validations, no improvement for " | |||
f"metric `{self._real_monitor}`") | |||
def on_train_epoch_begin(self, trainer): | |||
# 当是 epoch validate 的时候,下一步执行的就是这个, 所以在这里检查。 | |||
if self.wait >= self.patience: | |||
raise EarlyStopException(f"After {self.wait} validations, no improvement for " | |||
f"metric `{self._real_monitor}`(best value: {self.monitor_value})") | |||
def on_save_checkpoint(self, trainer) -> Dict: | |||
states = { | |||
'patience': self.patience, | |||
'wait': self.wait, | |||
'monitor': self.monitor, | |||
'monitor_value': self.monitor_value | |||
} | |||
return states | |||
def on_load_checkpoint(self, trainer, states): | |||
self.patience = states['patience'] | |||
self.wait = states['wait'] | |||
self.monitor = states['monitor'] | |||
self.monitor_value = float(states['monitor_value']) | |||
def callback_name(self): | |||
return f'EarlyStopCallback#monitor-{self.monitor}#patience-{self.patience}' | |||
@@ -4,8 +4,7 @@ __all__ = [ | |||
import os | |||
from typing import Optional, Callable | |||
from .callback import Callback | |||
from .utils import _get_monitor_value | |||
from .callback import HasMonitorCallback | |||
from io import BytesIO | |||
import shutil | |||
@@ -14,15 +13,15 @@ from fastNLP.core.log import logger | |||
from fastNLP.envs import all_rank_call | |||
class LoadBestModelCallback(Callback): | |||
def __init__(self, monitor:str, larger_better:bool = True, only_state_dict:bool = True, | |||
class LoadBestModelCallback(HasMonitorCallback): | |||
def __init__(self, monitor:str=None, larger_better:bool = True, only_state_dict:bool = True, | |||
save_folder:Optional[str] = None, model_save_fn:Optional[Callable] = None, | |||
model_load_fn:Optional[Callable] = None, | |||
delete_after_train:bool = True): | |||
""" | |||
保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。 | |||
:param str monitor: 监控的 metric 值。 | |||
:param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。 | |||
:param larger_better: 该 metric 值是否是越大越好。 | |||
:param save_folder: 保存的文件夹,如果为空,则保存在内存中。不为空,则保存一份权重到文件中,当为多机训练,且本值不为空时,请确保 | |||
不同的机器均可访问当该路径。当 model_save_fn 不为 None 时该值一定不能为空。 | |||
@@ -33,6 +32,7 @@ class LoadBestModelCallback(Callback): | |||
请在函数内完成对模型的加载。 | |||
:param delete_after_train: 在训练结束后是否删掉模型。 | |||
""" | |||
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True) | |||
if model_load_fn is not None: | |||
assert callable(model_load_fn), "`model_load_fn` must be a callable object." | |||
assert model_save_fn is not None, "`model_load_fn` and `model_save_fn` must be passed at the same time." | |||
@@ -56,15 +56,11 @@ class LoadBestModelCallback(Callback): | |||
self.real_save_folder = None | |||
self.buffer = BytesIO() | |||
self.monitor = monitor | |||
self.larger_better = larger_better | |||
self.save_folder = save_folder | |||
self.only_state_dict = only_state_dict | |||
self.model_save_fn = model_save_fn | |||
self.model_load_fn = model_load_fn | |||
self.delete_after_after = delete_after_train | |||
self._real_monitor = None | |||
self.monitor_value = float('-inf') if larger_better else float('inf') | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
if self.save_folder is not None and driver.is_distributed() and int(os.environ.get(FASTNLP_BACKEND_LAUNCH, 0))==1: | |||
@@ -76,13 +72,16 @@ class LoadBestModelCallback(Callback): | |||
raise RuntimeError(f"Currently {driver.__class__.__name__} does not support using `save_folder` to " | |||
f"save best model when launch using script.") | |||
super().on_after_trainer_initialized(trainer, driver) | |||
def on_sanity_check_end(self, trainer, sanity_check_res): | |||
self.get_monitor_value(sanity_check_res) | |||
def on_validate_end(self, trainer, results): | |||
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=results) | |||
if (monitor_value < self.monitor_value and self.larger_better is False) or \ | |||
(monitor_value > self.monitor_value and self.larger_better): | |||
self.monitor_value = monitor_value | |||
if len(results)==0: | |||
return | |||
monitor_value = self.get_monitor_value(results) | |||
if self.is_better_monitor_value(monitor_value, keep_if_better=True): | |||
if self.real_save_folder: | |||
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, | |||
model_save_fn=self.model_save_fn) | |||
@@ -8,7 +8,7 @@ __all__ = [ | |||
'RichCallback' | |||
] | |||
from .callback import Callback | |||
from .callback import HasMonitorCallback | |||
from fastNLP.core.callbacks.utils import _get_monitor_value | |||
from fastNLP.core.utils import f_rich_progress | |||
from fastNLP.core.log import logger | |||
@@ -28,15 +28,13 @@ def choose_progress_callback(progress_bar:str): | |||
return None | |||
class ProgressCallback(Callback): | |||
class ProgressCallback(HasMonitorCallback): | |||
def on_train_end(self, trainer): | |||
f_rich_progress.stop() | |||
def on_sanity_check_end(self, trainer, sanity_check_res): | |||
if len(sanity_check_res) and getattr(self, 'monitor', None) is not None: | |||
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=sanity_check_res) | |||
self.get_monitor_value(sanity_check_res) | |||
class RichCallback(ProgressCallback): | |||
@@ -46,28 +44,22 @@ class RichCallback(ProgressCallback): | |||
:param print_every: 多少个 batch 更新一次显示。 | |||
:param loss_round_ndigit: 显示的 loss 保留多少位有效数字 | |||
:param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。 | |||
:param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。如果为 None ,会尝试使用 trainer 中设置的 monitor 。 | |||
:param larger_better: 是否是monitor的结果越大越好。 | |||
:param format_json: 是否format json再打印 | |||
""" | |||
super().__init__() | |||
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False) | |||
self.print_every = print_every | |||
self.progress_bar = f_rich_progress | |||
self.task2id = {} | |||
self.loss = 0 | |||
self.loss_round_ndigit = loss_round_ndigit | |||
self.monitor = monitor | |||
self.larger_better = larger_better | |||
if larger_better: | |||
self.monitor_value = float('-inf') | |||
else: | |||
self.monitor_value = float('inf') | |||
self._real_monitor = monitor | |||
self.format_json = format_json | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
if not self.progress_bar.disable: | |||
self.progress_bar.set_disable(flag=trainer.driver.get_local_rank() != 0) | |||
super(RichCallback, self).on_after_trainer_initialized(trainer, driver) | |||
def on_train_begin(self, trainer): | |||
self.task2id['epoch'] = self.progress_bar.add_task(description='Epoch:0', total=trainer.n_epochs, | |||
@@ -109,16 +101,12 @@ class RichCallback(ProgressCallback): | |||
text_style = '' | |||
characters = '-' | |||
if self.monitor is not None: | |||
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=results) | |||
if (self.larger_better and monitor_value > self.monitor_value) or \ | |||
(not self.larger_better and monitor_value < self.monitor_value): | |||
monitor_value = self.get_monitor_value(results) | |||
if self.is_better_monitor_value(monitor_value, keep_if_better=True): | |||
if abs(self.monitor_value) != float('inf'): | |||
rule_style = 'spring_green3' | |||
text_style = '[bold]' | |||
characters = '+' | |||
self.monitor_value = monitor_value | |||
self.progress_bar.print() | |||
self.progress_bar.console.rule(text_style+f"Eval. results on Epoch:{trainer.cur_epoch_idx}, " | |||
f"Batch:{trainer.batch_idx_in_epoch}", | |||
@@ -151,18 +139,12 @@ class RawTextCallback(ProgressCallback): | |||
:param larger_better: 是否是monitor的结果越大越好。 | |||
:param format_json: 是否format json再打印 | |||
""" | |||
super().__init__() | |||
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False) | |||
self.print_every = print_every | |||
self.task2id = {} | |||
self.loss = 0 | |||
self.loss_round_ndigit = loss_round_ndigit | |||
self.monitor = monitor | |||
self.larger_better = larger_better | |||
if larger_better: | |||
self.monitor_value = float('-inf') | |||
else: | |||
self.monitor_value = float('inf') | |||
self._real_monitor = monitor | |||
self.set_monitor(monitor, larger_better) | |||
self.format_json = format_json | |||
self.num_signs = 10 | |||
@@ -189,14 +171,10 @@ class RawTextCallback(ProgressCallback): | |||
base_text = f'Eval. results on Epoch:{trainer.cur_epoch_idx}, Batch:{trainer.batch_idx_in_epoch}' | |||
text = '' | |||
if self.monitor is not None: | |||
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=results) | |||
if (self.larger_better and monitor_value > self.monitor_value) or \ | |||
(not self.larger_better and monitor_value < self.monitor_value): | |||
monitor_value = self.get_monitor_value(results) | |||
if self.is_better_monitor_value(monitor_value, keep_if_better=True): | |||
if abs(self.monitor_value) != float('inf'): | |||
text = '+'*self.num_signs + base_text + '+'*self.num_signs | |||
self.monitor_value = monitor_value | |||
if len(text) == 0: | |||
text = '-'*self.num_signs + base_text + '-'*self.num_signs | |||
@@ -19,23 +19,31 @@ def _get_monitor_value(monitor: str, real_monitor: Optional[str], res: dict) ->( | |||
if monitor in res: | |||
return monitor, res[monitor] | |||
if real_monitor in res: | |||
return real_monitor, res[real_monitor] | |||
pairs = [] | |||
for idx, (key, value) in enumerate(res.items()): | |||
match = SequenceMatcher(None, key, monitor).find_longest_match(0, len(key), 0, len(monitor)) | |||
pairs.append((key, value, match.size, idx)) | |||
match_size = _match_length(monitor, key) | |||
pairs.append((key, value, match_size, idx)) | |||
pairs.sort(key=lambda pair: (pair[2], -pair[3]), reverse=True) | |||
key, value, match_size = pairs[0][:3] | |||
if real_monitor is not None and real_monitor in res and real_monitor != key: | |||
# 如果 real_monitor 比新找的更长就继续用之前的。 | |||
match = SequenceMatcher(None, real_monitor, monitor).find_longest_match(0, len(real_monitor), 0, len(monitor)) | |||
if match.size > match_size: | |||
return real_monitor, res[real_monitor] | |||
return key, value | |||
logger.warning(f"We can not find `{monitor}` in the evaluation result (with keys as {list(res.keys())}), " | |||
f"we use the `{key}` as the monitor.") | |||
real_monitor = key | |||
return real_monitor, value | |||
def _match_length(a:str, b:str)->int: | |||
""" | |||
需要把长度短的放在前面 | |||
:param a: | |||
:param b: | |||
:return: | |||
""" | |||
short = a if len(a) < len(b) else b | |||
long = a if len(a)>=len(b) else b | |||
match = SequenceMatcher(None, short, long).find_longest_match(0, len(short), 0, len(long)) | |||
return match.size | |||
@@ -25,6 +25,7 @@ from fastNLP.core.utils import check_fn_not_empty_params, get_fn_arg_names, matc | |||
from fastNLP.envs import rank_zero_call | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs import FASTNLP_MODEL_FILENAME | |||
from fastNLP.core.utils.exceptions import EarlyStopException | |||
class Trainer(TrainerEventTrigger): | |||
@@ -50,6 +51,8 @@ class Trainer(TrainerEventTrigger): | |||
model_wo_auto_param_call: bool = False, | |||
accumulation_steps: int = 1, | |||
fp16: bool = False, | |||
monitor: str = None, | |||
larger_better: bool = True, | |||
marker: Optional[str] = None, | |||
**kwargs | |||
): | |||
@@ -106,6 +109,10 @@ class Trainer(TrainerEventTrigger): | |||
为 False,那么我们会将 batch 直接透传给 forward 函数。注意上述逻辑同样应用于 `train_step`, `validate_step` 和 `test_step`; | |||
:param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1; | |||
:param fp16: 是否开启混合精度训练;默认为 False; | |||
:param monitor: 当存在 validate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 | |||
在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。 | |||
:param larger_better: monitor 的值是否是越大越好。 | |||
:param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None; | |||
:param kwargs: 一些其它的可能需要的参数; | |||
torch_non_blocking: 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking; | |||
@@ -213,6 +220,8 @@ class Trainer(TrainerEventTrigger): | |||
self.evaluator = None | |||
self.epoch_validate = lambda *args, **kwargs: ... | |||
self.step_validate = lambda *args, **kwargs: ... | |||
self.monitor = monitor | |||
self.larger_better = larger_better | |||
if metrics is not None and validate_dataloaders is not None: | |||
if not callable(validate_every) and (not isinstance(validate_every, int) or validate_every == 0): | |||
raise ValueError("Parameter 'validate_every' should be set to 'int' type and either < 0 or > 0.") | |||
@@ -242,6 +251,7 @@ class Trainer(TrainerEventTrigger): | |||
else: | |||
# validate_every > 0 | |||
self._step_validate_filter = Filter(every=validate_every) | |||
self.metrics = metrics | |||
self.validate_every = validate_every | |||
@@ -323,6 +333,10 @@ class Trainer(TrainerEventTrigger): | |||
self.driver.barrier() | |||
self.on_train_end() | |||
self.driver.barrier() | |||
except EarlyStopException as e: | |||
logger.info(f"Catch early stop exception: {e.msg}.") | |||
self.on_exception(e) | |||
except KeyboardInterrupt as e: | |||
self.driver.on_exception() | |||
self.on_exception(e) | |||
@@ -29,14 +29,16 @@ def _compute_f_pre_rec(beta_square, tp, fn, fp): | |||
class ClassifyFPreRecMetric(Metric): | |||
def __init__(self, backend: Union[str, Backend, None] = 'auto', aggregate_when_get_metric: bool = False, | |||
tag_vocab: Vocabulary = None, encoding_type: str = None, ignore_labels: List[str] = None, | |||
only_gross: bool = True, f_type='micro', beta=1) -> None: | |||
def __init__(self, tag_vocab: Vocabulary = None, ignore_labels: List[str] = None, num_class: int = 0, | |||
only_gross: bool = True, f_type='micro', beta=1, backend: Union[str, Backend, None] = 'auto', | |||
aggregate_when_get_metric: bool = False) -> None: | |||
super(ClassifyFPreRecMetric, self).__init__(backend=backend, | |||
aggregate_when_get_metric=aggregate_when_get_metric) | |||
if f_type not in ('micro', 'macro'): | |||
raise ValueError("f_type only supports `micro` or `macro`', got {}.".format(f_type)) | |||
if tag_vocab: | |||
if not isinstance(tag_vocab, Vocabulary): | |||
raise TypeError("tag_vocab can only be fastNLP.Vocabulary, not {}.".format(type(tag_vocab))) | |||
self.ignore_labels = ignore_labels | |||
self.f_type = f_type | |||
self.beta = beta | |||
@@ -45,9 +47,32 @@ class ClassifyFPreRecMetric(Metric): | |||
self.tag_vocab = tag_vocab | |||
self._tp, self._fp, self._fn = defaultdict(partial(self.register_element, aggregate_method='sum')),\ | |||
defaultdict(partial(self.register_element, aggregate_method='sum')),\ | |||
defaultdict(partial(self.register_element, aggregate_method='sum')) | |||
self._tp = {} | |||
self._fp = {} | |||
self._fn = {} | |||
if tag_vocab: | |||
for word, _ in tag_vocab: | |||
word = word.lower() | |||
if word != 'o': | |||
word = word[2:] | |||
if word in self._true_positives: | |||
continue | |||
self._tp[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum', | |||
backend=backend) | |||
self._fn[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum', | |||
backend=backend) | |||
self._fp[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum', | |||
backend=backend) | |||
elif num_class > 0: | |||
for word in range(num_class): | |||
self._tp[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum', | |||
backend=backend) | |||
self._fn[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum', | |||
backend=backend) | |||
self._fp[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum', | |||
backend=backend) | |||
else: | |||
raise ValueError() | |||
def get_metric(self) -> dict: | |||
r""" | |||
@@ -68,9 +93,11 @@ class ClassifyFPreRecMetric(Metric): | |||
tag_name = self.tag_vocab.to_word(tag) | |||
else: | |||
tag_name = int(tag) | |||
tp = self._tp[tag] | |||
fn = self._fn[tag] | |||
fp = self._fp[tag] | |||
tp = self._tp[tag].get_scalar() | |||
fn = self._fn[tag].get_scalar() | |||
fp = self._fp[tag].get_scalar() | |||
if tp == fn == fp == 0: | |||
continue | |||
f, pre, rec = _compute_f_pre_rec(self.beta_square, tp, fn, fp) | |||
f_sum += f | |||
pre_sum += pre | |||
@@ -90,20 +117,29 @@ class ClassifyFPreRecMetric(Metric): | |||
if self.f_type == 'micro': | |||
f, pre, rec = _compute_f_pre_rec(self.beta_square, | |||
sum(self._tp.values()), | |||
sum(self._fn.values()), | |||
sum(self._fp.values())) | |||
sum(val.get_scalar() for val in self._tp.values()), | |||
sum(val.get_scalar() for val in self._fn.values()), | |||
sum(val.get_scalar() for val in self._fp.values())) | |||
evaluate_result['f'] = f | |||
evaluate_result['pre'] = pre | |||
evaluate_result['rec'] = rec | |||
for key, value in evaluate_result.items(): | |||
evaluate_result[key] = round(value, 6) | |||
return evaluate_result | |||
def update(self, pred, target, seq_len=None): | |||
r""" | |||
evaluate函数将针对一个批次的预测结果做评价指标的累计 | |||
:param torch.Tensor pred: 预测的tensor, tensor的形状可以是torch.Size([B,]), torch.Size([B, n_classes]), | |||
torch.Size([B, max_len]), 或者torch.Size([B, max_len, n_classes]) | |||
:param torch.Tensor target: 真实值的tensor, tensor的形状可以是Element's can be: torch.Size([B,]), | |||
torch.Size([B,]), torch.Size([B, max_len]), 或者torch.Size([B, max_len]) | |||
:param torch.Tensor seq_len: 序列长度标记, 标记的形状可以是None, None, torch.Size([B]), 或者torch.Size([B]). | |||
如果mask也被传进来的话seq_len会被忽略. | |||
""" | |||
pred = self.tensor2numpy(pred) | |||
target = self.tensor2numpy(target) | |||
if seq_len is not None: | |||
@@ -122,14 +158,14 @@ class ClassifyFPreRecMetric(Metric): | |||
f"pred have element numbers: {len(target.flatten())}") | |||
pass | |||
elif len(pred.ndim) == len(target.ndim) + 1: | |||
elif pred.ndim == target.ndim + 1: | |||
pred = pred.argmax(axis=-1) | |||
if seq_len is None and len(target.ndim) > 1: | |||
if seq_len is None and target.ndim > 1: | |||
warnings.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.") | |||
else: | |||
raise RuntimeError(f"when pred have " | |||
f"size:{pred.ndim}, target should have size: {pred.ndim} or " | |||
f"{pred.ndim[:-1]}, got {target.ndim}.") | |||
f"size:{pred.shape}, target should have size: {pred.shape} or " | |||
f"{pred.shape[:-1]}, got {target.shape}.") | |||
if masks is not None: | |||
target = target * masks | |||
pred = pred * masks | |||
@@ -138,5 +174,3 @@ class ClassifyFPreRecMetric(Metric): | |||
self._tp[target_idx] += ((pred == target_idx) * (target != target_idx)).sum().item() | |||
self._fp[target_idx] += ((pred == target_idx) * (target == target_idx)).sum().item() | |||
self._fn[target_idx] += ((pred != target_idx) * (target != target_idx)).sum().item() | |||
@@ -0,0 +1,10 @@ | |||
class EarlyStopException(BaseException): | |||
r""" | |||
用于EarlyStop时从Trainer训练循环中跳出。 | |||
""" | |||
def __init__(self, msg): | |||
super(EarlyStopException, self).__init__(msg) | |||
self.msg = msg |
@@ -12,32 +12,27 @@ def test_get_monitor_value(): | |||
with Capturing() as output: | |||
monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res) | |||
assert monitor == 'f1' and value==0.2 | |||
assert 'We can not find' not in output[0] | |||
# 测试可以匹配,且选择更靠前的 | |||
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4} | |||
with Capturing() as output: | |||
monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res) | |||
assert monitor=='acc#f1' and value==0.2 | |||
assert 'We can not find' in output[0] | |||
# 测试monitor匹配不上,使用real_monitor | |||
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4} | |||
with Capturing() as output: | |||
monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#rec', res=res) | |||
monitor, value = _get_monitor_value(monitor='acc', real_monitor='acc#rec', res=res) | |||
assert monitor=='acc#rec' and value==0.3 | |||
assert 'We can not find' not in output[0] | |||
# 测试monitor/real_monitor匹配不上, 重新选择 | |||
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4} | |||
with Capturing() as output: | |||
monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#r', res=res) | |||
assert monitor=='acc#f1' and value==0.2 | |||
assert 'We can not find' in output[0] | |||
# 测试partial的位置 | |||
res = {"acc#acc": 0.52, "loss#loss": 2} | |||
with Capturing() as output: | |||
monitor, value = _get_monitor_value(monitor='-loss', real_monitor=None, res=res) | |||
assert monitor=='loss#loss' and value==2 | |||
assert 'We can not find' in output[0] |
@@ -15,6 +15,7 @@ from sklearn.metrics import accuracy_score as sklearn_accuracy | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.metrics.metric import Metric | |||
from .utils import find_free_network_port, setup_ddp, _assert_allclose | |||
set_start_method("spawn", force=True) | |||
@@ -23,42 +24,6 @@ NUM_PROCESSES = 2 | |||
pool = None | |||
def setup_ddp(rank: int, world_size: int, master_port: int) -> None: | |||
"""Setup ddp environment.""" | |||
os.environ["MASTER_ADDR"] = "localhost" | |||
os.environ["MASTER_PORT"] = str(master_port) | |||
print(torch.cuda.device_count()) | |||
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): | |||
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) | |||
def find_free_network_port() -> int: | |||
"""Finds a free port on localhost. | |||
It is useful in single-node training when we don't want to connect to a real master node but have to set the | |||
`MASTER_PORT` environment variable. | |||
""" | |||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |||
s.bind(("", 0)) | |||
s.listen(1) | |||
port = s.getsockname()[1] | |||
s.close() | |||
return port | |||
def _assert_allclose(my_result: Union[float, np.ndarray], sklearn_result: Union[float, np.ndarray], | |||
atol: float = 1e-8) -> None: | |||
""" | |||
测试对比结果,这里不用非得是必须数组且维度对应,一些其他情况例如 np.allclose(np.array([[1e10, ], ]), 1e10+1) 也是 True | |||
:param my_result: 可以不限设备等 | |||
:param sklearn_result: | |||
:param atol: | |||
:return: | |||
""" | |||
assert np.allclose(a=my_result, b=sklearn_result, atol=atol) | |||
def _test(local_rank: int, | |||
world_size: int, | |||
device: torch.device, | |||
@@ -0,0 +1,177 @@ | |||
from functools import partial | |||
import copy | |||
import pytest | |||
import torch | |||
import numpy as np | |||
from torch.multiprocessing import Pool, set_start_method | |||
from fastNLP.core.metrics import ClassifyFPreRecMetric | |||
from fastNLP.core.dataset import DataSet | |||
from .utils import find_free_network_port, setup_ddp | |||
set_start_method("spawn", force=True) | |||
def _test(local_rank: int, world_size: int, device: torch.device, | |||
dataset: DataSet, metric_class, metric_kwargs, metric_result): | |||
metric = metric_class(**metric_kwargs) | |||
# dataset 也类似(每个进程有自己的一个) | |||
dataset = copy.deepcopy(dataset) | |||
metric.to(device) | |||
# 把数据拆到每个 GPU 上,有点模仿 DistributedSampler 的感觉,但这里数据单位是一个 batch(即每个 i 取了一个 batch 到自己的 GPU 上) | |||
for i in range(local_rank, len(dataset), world_size): | |||
pred, tg = dataset[i]['pred'].to(device), dataset[i]['tg'].to(device) | |||
metric.update(pred, tg) | |||
my_result = metric.get_metric() | |||
for keys in ['f', 'pre', 'rec']: | |||
np.allclose(my_result[keys], metric_result[keys], atol=0.000001) | |||
class TestClassfiyFPreRecMetric: | |||
def test_case_1(self): | |||
pred = torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910], | |||
[1.3410, 0.2889, -0.8667, -1.8580, 0.3029], | |||
[0.7459, -1.1957, 0.3231, 0.0308, -0.1847], | |||
[1.1439, -0.0057, 0.8203, 0.0312, -1.0051], | |||
[-0.4870, 0.3215, -0.8290, 0.9221, 0.4683], | |||
[0.9078, 1.0674, -0.5629, 0.3895, 0.8917], | |||
[-0.7743, -0.4041, -0.9026, 0.2112, 1.0892], | |||
[1.8232, -1.4188, -2.5615, -2.4187, 0.5907], | |||
[-1.0592, 0.4164, -0.1192, 1.4238, -0.9258], | |||
[-1.1137, 0.5773, 2.5778, 0.5398, -0.3323], | |||
[-0.3868, -0.5165, 0.2286, -1.3876, 0.5561], | |||
[-0.3304, 1.3619, -1.5744, 0.4902, -0.7661], | |||
[1.8387, 0.5234, 0.4269, 1.3748, -1.2793], | |||
[0.6692, 0.2571, 1.2425, -0.5894, -0.0184], | |||
[0.4165, 0.4084, -0.1280, 1.4489, -2.3058], | |||
[-0.5826, -0.5469, 1.5898, -0.2786, -0.9882], | |||
[-1.5548, -2.2891, 0.2983, -1.2145, -0.1947], | |||
[-0.7222, 2.3543, -0.5801, -0.0640, -1.5614], | |||
[-1.4978, 1.9297, -1.3652, -0.2358, 2.5566], | |||
[0.1561, -0.0316, 0.9331, 1.0363, 2.3949], | |||
[0.2650, -0.8459, 1.3221, 0.1321, -1.1900], | |||
[0.0664, -1.2353, -0.5242, -1.4491, 1.3300], | |||
[-0.2744, 0.0941, 0.7157, 0.1404, 1.2046], | |||
[0.9341, -0.6652, 1.4512, 0.9608, -0.3623], | |||
[-1.1641, 0.0873, 0.1163, -0.2068, -0.7002], | |||
[1.4775, -2.0025, -0.5634, -0.1589, 0.0247], | |||
[1.0151, 1.0304, -0.1042, -0.6955, -0.0629], | |||
[-0.3119, -0.4558, 0.7757, 0.0758, -1.6297], | |||
[1.0654, 0.0313, -0.7716, 0.1194, 0.6913], | |||
[-0.8088, -0.6648, -0.5018, -0.0230, -0.8207], | |||
[-0.7753, -0.3508, 1.6163, 0.7158, 1.5207], | |||
[0.8692, 0.7718, -0.6734, 0.6515, 0.0641]]) | |||
arg_max_pred = torch.argmax(pred, dim=-1) | |||
target = torch.tensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4, 0, 2, 4, 4, 3, 4, 4, 3, | |||
0, 3, 0, 0, 0, 1, 3, 1]) | |||
metric = ClassifyFPreRecMetric(f_type='macro', num_class=5) | |||
metric.update(pred, target) | |||
result_dict = metric.get_metric() | |||
f1_score = 0.1882051282051282 | |||
recall = 0.1619047619047619 | |||
pre = 0.23928571428571427 | |||
ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall} | |||
for keys in ['f', 'pre', 'rec']: | |||
np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001) | |||
metric = ClassifyFPreRecMetric(f_type='micro', num_class=5) | |||
metric.update(pred, target) | |||
result_dict = metric.get_metric() | |||
f1_score = 0.21875 | |||
recall = 0.21875 | |||
pre = 0.21875 | |||
ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall} | |||
for keys in ['f', 'pre', 'rec']: | |||
np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001) | |||
metric = ClassifyFPreRecMetric(only_gross=False, f_type='macro', num_class=5) | |||
metric.update(pred, target) | |||
result_dict = metric.get_metric() | |||
ground_truth = { | |||
'0': {'f1-score': 0.13333333333333333, 'precision': 0.125, 'recall': 0.14285714285714285, 'support': 7}, | |||
'1': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 5}, | |||
'2': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 2}, | |||
'3': {'f1-score': 0.30769230769230765, 'precision': 0.5, 'recall': 0.2222222222222222, 'support': 9}, | |||
'4': {'f1-score': 0.5, 'precision': 0.5714285714285714, 'recall': 0.4444444444444444, 'support': 9}, | |||
'macro avg': {'f1-score': 0.1882051282051282, 'precision': 0.23928571428571427, | |||
'recall': 0.1619047619047619, 'support': 32}, | |||
'micro avg': {'f1-score': 0.21875, 'precision': 0.21875, 'recall': 0.21875, 'support': 32}, | |||
'weighted avg': {'f1-score': 0.2563301282051282, 'precision': 0.3286830357142857, 'recall': 0.21875, | |||
'support': 32}} | |||
for keys in result_dict.keys(): | |||
if keys == "f" or "pre" or "rec": | |||
continue | |||
gl = str(keys[-1]) | |||
tmp_d = {"p": "precision", "r": "recall", "f": "f1-score"} | |||
gk = tmp_d[keys[0]] | |||
np.allclose(result_dict[keys], ground_truth[gl][gk], atol=0.000001) | |||
@pytest.mark.parametrize("f_type, f1_score,recall,pre", | |||
[('macro', 0.1882051282051282, 0.1619047619047619, 0.23928571428571427), | |||
('micro', 0.21875, 0.21875, 0.21875)]) | |||
def test_case_2(self, f_type, f1_score, recall, pre): | |||
dataset = DataSet({ | |||
'pred': [torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910], | |||
[1.3410, 0.2889, -0.8667, -1.8580, 0.3029], | |||
[0.7459, -1.1957, 0.3231, 0.0308, -0.1847], | |||
[1.1439, -0.0057, 0.8203, 0.0312, -1.0051], | |||
[-0.4870, 0.3215, -0.8290, 0.9221, 0.4683], | |||
[0.9078, 1.0674, -0.5629, 0.3895, 0.8917], | |||
[-0.7743, -0.4041, -0.9026, 0.2112, 1.0892], | |||
[1.8232, -1.4188, -2.5615, -2.4187, 0.5907], | |||
[-1.0592, 0.4164, -0.1192, 1.4238, -0.9258], | |||
[-1.1137, 0.5773, 2.5778, 0.5398, -0.3323], | |||
[-0.3868, -0.5165, 0.2286, -1.3876, 0.5561], | |||
[-0.3304, 1.3619, -1.5744, 0.4902, -0.7661], | |||
[1.8387, 0.5234, 0.4269, 1.3748, -1.2793], | |||
[0.6692, 0.2571, 1.2425, -0.5894, -0.0184], | |||
[0.4165, 0.4084, -0.1280, 1.4489, -2.3058], | |||
[-0.5826, -0.5469, 1.5898, -0.2786, -0.9882]]), | |||
torch.tensor([ | |||
[-1.5548, -2.2891, 0.2983, -1.2145, -0.1947], | |||
[-0.7222, 2.3543, -0.5801, -0.0640, -1.5614], | |||
[-1.4978, 1.9297, -1.3652, -0.2358, 2.5566], | |||
[0.1561, -0.0316, 0.9331, 1.0363, 2.3949], | |||
[0.2650, -0.8459, 1.3221, 0.1321, -1.1900], | |||
[0.0664, -1.2353, -0.5242, -1.4491, 1.3300], | |||
[-0.2744, 0.0941, 0.7157, 0.1404, 1.2046], | |||
[0.9341, -0.6652, 1.4512, 0.9608, -0.3623], | |||
[-1.1641, 0.0873, 0.1163, -0.2068, -0.7002], | |||
[1.4775, -2.0025, -0.5634, -0.1589, 0.0247], | |||
[1.0151, 1.0304, -0.1042, -0.6955, -0.0629], | |||
[-0.3119, -0.4558, 0.7757, 0.0758, -1.6297], | |||
[1.0654, 0.0313, -0.7716, 0.1194, 0.6913], | |||
[-0.8088, -0.6648, -0.5018, -0.0230, -0.8207], | |||
[-0.7753, -0.3508, 1.6163, 0.7158, 1.5207], | |||
[0.8692, 0.7718, -0.6734, 0.6515, 0.0641] | |||
])], | |||
'tg': [ | |||
torch.LongTensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4]), | |||
torch.LongTensor([0, 2, 4, 4, 3, 4, 4, 3, 0, 3, 0, 0, 0, 1, 3, 1]) | |||
] | |||
}) | |||
metric_kwargs = { | |||
'f_type': f_type, | |||
'num_class': 5, | |||
'only_gross': False, | |||
'aggregate_when_get_metric': True | |||
} | |||
ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall} | |||
NUM_PROCESSES = 2 | |||
pool = Pool(processes=NUM_PROCESSES) | |||
master_port = find_free_network_port() | |||
pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)]) | |||
pool.starmap(partial(_test, dataset=dataset, | |||
metric_class=ClassifyFPreRecMetric, | |||
metric_kwargs=metric_kwargs, | |||
metric_result=ground_truth), | |||
[(rank, NUM_PROCESSES, torch.device(f'cuda:{rank+4}')) for rank in range(NUM_PROCESSES)]) | |||
pool.close() | |||
pool.join() |
@@ -14,6 +14,7 @@ from torch.multiprocessing import Pool, set_start_method | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.core.metrics import SpanFPreRecMetric | |||
from fastNLP.core.dataset import DataSet | |||
from .utils import find_free_network_port, setup_ddp | |||
set_start_method("spawn", force=True) | |||
@@ -41,40 +42,6 @@ NUM_PROCESSES = 2 | |||
pool = None | |||
def setup_ddp(rank: int, world_size: int, master_port: int) -> None: | |||
"""Setup ddp environment.""" | |||
os.environ["MASTER_ADDR"] = "localhost" | |||
os.environ["MASTER_PORT"] = str(master_port) | |||
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): | |||
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) | |||
def find_free_network_port() -> int: | |||
"""Finds a free port on localhost. | |||
It is useful in single-node training when we don't want to connect to a real master node but have to set the | |||
`MASTER_PORT` environment variable. | |||
""" | |||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |||
s.bind(("", 0)) | |||
s.listen(1) | |||
port = s.getsockname()[1] | |||
s.close() | |||
return port | |||
# @pytest.fixture(scope='class', autouse=True) | |||
# def pre_process(): | |||
# global pool | |||
# pool = Pool(processes=NUM_PROCESSES) | |||
# master_port = find_free_network_port() | |||
# pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)]) | |||
# yield | |||
# pool.close() | |||
# pool.join() | |||
def _test(local_rank: int, | |||
world_size: int, | |||
device: torch.device, | |||
@@ -0,0 +1,42 @@ | |||
import os, sys | |||
import socket | |||
from typing import Union | |||
import torch | |||
from torch import distributed | |||
import numpy as np | |||
def setup_ddp(rank: int, world_size: int, master_port: int) -> None: | |||
"""Setup ddp environment.""" | |||
os.environ["MASTER_ADDR"] = "localhost" | |||
os.environ["MASTER_PORT"] = str(master_port) | |||
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): | |||
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) | |||
def find_free_network_port() -> int: | |||
"""Finds a free port on localhost. | |||
It is useful in single-node training when we don't want to connect to a real master node but have to set the | |||
`MASTER_PORT` environment variable. | |||
""" | |||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |||
s.bind(("", 0)) | |||
s.listen(1) | |||
port = s.getsockname()[1] | |||
s.close() | |||
return port | |||
def _assert_allclose(my_result: Union[float, np.ndarray], sklearn_result: Union[float, np.ndarray], | |||
atol: float = 1e-8) -> None: | |||
""" | |||
测试对比结果,这里不用非得是必须数组且维度对应,一些其他情况例如 np.allclose(np.array([[1e10, ], ]), 1e10+1) 也是 True | |||
:param my_result: 可以不限设备等 | |||
:param sklearn_result: | |||
:param atol: | |||
:return: | |||
""" | |||
assert np.allclose(a=my_result, b=sklearn_result, atol=atol) |