diff --git a/fastNLP/core/callbacks/__init__.py b/fastNLP/core/callbacks/__init__.py index a47ab998..fc5d9d5b 100644 --- a/fastNLP/core/callbacks/__init__.py +++ b/fastNLP/core/callbacks/__init__.py @@ -10,7 +10,8 @@ __all__ = [ 'ProgressCallback', 'RichCallback', "LRSchedCallback", - 'LoadBestModelCallback' + 'LoadBestModelCallback', + "EarlyStopCallback" ] @@ -21,4 +22,5 @@ from .checkpoint_callback import ModelCheckpointCallback, TrainerCheckpointCallb from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback from .lr_scheduler_callback import LRSchedCallback from .load_best_model_callback import LoadBestModelCallback +from .early_stop_callback import EarlyStopCallback diff --git a/fastNLP/core/callbacks/callback.py b/fastNLP/core/callbacks/callback.py index b2d99b51..4b553a1f 100644 --- a/fastNLP/core/callbacks/callback.py +++ b/fastNLP/core/callbacks/callback.py @@ -1,11 +1,15 @@ -from typing import Union, Callable, Dict, Optional +from typing import Union, Callable, Dict, Optional, Any +from abc import ABC __all__ = [ 'Callback', ] from .callback_events import Events, EventsList, Filter +from .utils import _get_monitor_value from fastNLP.core.callbacks.callback_events import _SingleEventState +from fastNLP.core.log import logger +from fastNLP.core.utils import apply_to_collection class Callback: @@ -150,4 +154,82 @@ class _CallbackWrapper(Callback): return self.fn.__name__ +class CanItemDataType(ABC): + """ + 检测可以进行传输的对象。 + + """ + + @classmethod + def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: + if cls is CanItemDataType: + item = getattr(subclass, 'item', None) + return callable(item) + return NotImplemented + + +class HasMonitorCallback(Callback): + def __init__(self, monitor, larger_better, must_have_monitor=False): + self.set_monitor(monitor, larger_better) + self.must_have_moinitor = must_have_monitor + + def set_monitor(self, monitor, larger_better): + self.monitor = str(monitor) if monitor is not None else None + self.larger_better = bool(larger_better) + if larger_better: + self.monitor_value = float('-inf') + else: + self.monitor_value = float('inf') + self._real_monitor = self.monitor + + def on_after_trainer_initialized(self, trainer, driver): + """ + 如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。 + 同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。 + + :param trainer: + :param driver: + :return: + """ + if self.monitor is None and trainer.monitor is not None: + self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better) + if self.must_have_moinitor and self.monitor is None: + raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. " + f"You can set it in the initialization or through Trainer.") + + def get_monitor_value(self, results:Dict)->float: + """ + 获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。 + :param results: + :return: + """ + if len(results)==0: + return 0 + # 保证所有的 tensor 都被转换为了 python 特定的类型 + results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item()) + use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, + real_monitor=self._real_monitor, + res=results) + if self._real_monitor != use_monitor: # 发生了替换需要打印 + logger.warning( + f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), " + f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.") + self._real_monitor = use_monitor + return monitor_value + + def is_better_monitor_value(self, monitor_value: float, keep_if_better=True): + """ + 检测 monitor_value 是否是更好的 + + :param monitor_value: + :param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。 + :return: + """ + better = False + if (self.larger_better and monitor_value > self.monitor_value) or \ + (not self.larger_better and monitor_value < self.monitor_value): + better = True + if keep_if_better: + self.monitor_value = monitor_value + return better \ No newline at end of file diff --git a/fastNLP/core/callbacks/checkpoint_callback.py b/fastNLP/core/callbacks/checkpoint_callback.py index 12b6a9e6..839a9522 100644 --- a/fastNLP/core/callbacks/checkpoint_callback.py +++ b/fastNLP/core/callbacks/checkpoint_callback.py @@ -5,12 +5,12 @@ __all__ = [ import os from typing import Union, Optional, Callable, Dict, Sequence, Any, Mapping from pathlib import Path -from abc import ABC import sys +from copy import deepcopy import fastNLP -from .callback import Callback, Filter +from .callback import Callback, HasMonitorCallback from fastNLP.core.callbacks.utils import _get_monitor_value from fastNLP.core.log import logger from fastNLP.envs import FASTNLP_LAUNCH_TIME @@ -18,22 +18,7 @@ from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir from fastNLP.core.utils import apply_to_collection -class CanItemDataType(ABC): - """ - 检测可以进行传输的对象。 - - """ - - @classmethod - def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: - if cls is CanItemDataType: - item = getattr(subclass, 'item', None) - return callable(item) - return NotImplemented - - - -class CheckpointCallback(Callback): +class CheckpointCallback(HasMonitorCallback): def __init__( self, monitor, @@ -48,13 +33,8 @@ class CheckpointCallback(Callback): model_save_fn: Optional[Callable] = None, **kwargs, ): - # 我们新加了逻辑,如果 checkpoint callback 自己没有设置 monitor 和 larger_better,那么我们会将其在 trainer 中的设置赋值给它们; - # if monitor is None and save_topk is not None: - # raise ValueError("Parameter `monitor` must be set when you want to use 'save_topk'.") - - if monitor is not None and not isinstance(monitor, str): - raise ValueError("Parameter `monitor` should be of 'str' type.") - + super().__init__(monitor=monitor, larger_better=larger_better, + must_have_monitor=save_topk is not None) if save_folder is None: logger.warning( "Parameter `path` is None, and we will use the current work directory to find and load your model.") @@ -92,13 +72,12 @@ class CheckpointCallback(Callback): "`BaseException` type.") else: save_on_exception = [] - self.monitor = monitor + self.save_folder = Path(save_folder) self.save_every_n_epochs = save_every_n_epochs self.save_every_n_batches = save_every_n_batches self.save_last = save_last self.save_topk = save_topk - self.larger_better = larger_better self.only_state_dict = only_state_dict self.model_save_fn = model_save_fn self.save_on_exception = save_on_exception @@ -108,12 +87,6 @@ class CheckpointCallback(Callback): self._topk_model = {} self._topn = 0 # 表示目前已经保存了几个最好的模型; - # 因为我们在 `_get_validate_metric` 函数中,当在返回的 `validate_res` 字典中找不到 `monitor` 时,是使用匹配找到的 - # key 对应的 value 当做结果;但是这样存在的一个问题在于如果用户传入的 metric 返回的 sub_metric 的名字可能会混淆,并且其在下一次 - # 训练的代码中修改了这些 sub_metric 返回的顺序,那么就会导致模糊匹配拿到的 key 和 value 与之前的不是同一个,这显然不是合理的行为; - # 因此我们通过该变量来表示我们通过模糊匹配拿到的 key; - self._real_monitor = self.monitor - # 注意这里应当保证只有进程 0 在执行这个操作,因为当用户使用 python -m torch.distributed.launch 来拉起进程的时候, # FASTNLP_LAUNCH_TIME 在每一个进程上的值是不一样的; self.timestamp_path = self.save_folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME]) @@ -121,20 +94,15 @@ class CheckpointCallback(Callback): synchronize_mkdir(self.timestamp_path) def on_after_trainer_initialized(self, trainer, driver): - if self.monitor is None: - if trainer.monitor is not None: - self.monitor = trainer.monitor - self.larger_better = trainer.larger_better - elif self.save_topk is not None: - raise RuntimeError("You are using `topk` mode, but you have not set the `monitor` value either in this" - "callback or in trainer.") - else: - self.monitor = None + if self.save_topk is not None: + super().on_after_trainer_initialized(trainer, driver) if self.save_topk is not None and trainer.evaluator is None: - raise RuntimeError("You are using `topk` mode, but there is no `evaluator` in trainer.") + logger.warning("You set `save_topk`, but `validate_dataloaders` is not set in Trainer.") - def on_validate_end(self, trainer, validate_res): - self._save_topk(trainer, validate_res) + def on_validate_end(self, trainer, results): + if len(results) == 0: + return + self._save_topk(trainer, results) def on_train_epoch_end(self, trainer: "fastNLP.Trainer"): if trainer.cur_epoch_idx % self.save_every_n_epochs == 0: @@ -157,7 +125,7 @@ class CheckpointCallback(Callback): def on_sanity_check_end(self, trainer, sanity_check_res): # 主要核对一下 monitor 是否存在。 - self._get_validate_metric(sanity_check_res) + self.get_monitor_value(results=sanity_check_res) def on_save_checkpoint(self, trainer) -> Dict: """ @@ -168,8 +136,7 @@ class CheckpointCallback(Callback): states = {} states['timestamp_path'] = str(self.timestamp_path.absolute()) - states['_topk_model'] = apply_to_collection(self._topk_model, dtype=CanItemDataType, - function=lambda x:x.item()) + states['_topk_model'] = deepcopy(self._topk_model) states['save_topk'] = 0 if self.save_topk is None else self.save_topk states['_real_monitor'] = self._real_monitor return states @@ -190,30 +157,30 @@ class CheckpointCallback(Callback): self._topk_model.update(self._topk_model) self._real_monitor = states["real_monitor"] - def _save_topk(self, trainer: "fastNLP.Trainer", validate_res: Dict): + def _save_topk(self, trainer: "fastNLP.Trainer", results: Dict): """ 根据validate_res决定保存哪些model的函数。会自动移除掉不满足topk的文件夹。 :param trainer: - :param validate_res: + :param results: :return: """ if self.save_topk is not None: - _metric_value = self._get_validate_metric(validate_res) + monitor_value = self.get_monitor_value(results=results) folder_name = f"{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}" \ - f"-{self._real_monitor}_{_metric_value}" + f"-{self._real_monitor}_{monitor_value}" _should_save = False if self._topn < self.save_topk: - self._topk_model[folder_name] = _metric_value + self._topk_model[folder_name] = monitor_value self._topn += 1 _should_save = True else: _least_valuable_model = (min if self.larger_better else max)(self._topk_model, key=lambda x: self._topk_model[x]) - if (self.larger_better and _metric_value > self._topk_model[_least_valuable_model]) or \ - (self.larger_better is False and _metric_value < self._topk_model[_least_valuable_model]): - self._topk_model[folder_name] = _metric_value + if (self.larger_better and monitor_value > self._topk_model[_least_valuable_model]) or \ + (self.larger_better is False and monitor_value < self._topk_model[_least_valuable_model]): + self._topk_model[folder_name] = monitor_value _should_save = True self._topk_model.pop(_least_valuable_model) synchronize_safe_rm(self.timestamp_path.joinpath(_least_valuable_model)) @@ -249,7 +216,11 @@ class CheckpointCallback(Callback): :return: """ use_monitor, value = _get_monitor_value(monitor=self.monitor, real_monitor=self._real_monitor, res=res) + if self._real_monitor != use_monitor: + logger.warning(f"We can not find `{self._real_monitor}` in the evaluation result (with keys as {list(res.keys())}), " + f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.") self._real_monitor = use_monitor + return value @property @@ -277,7 +248,7 @@ class ModelCheckpointCallback(CheckpointCallback): 若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 不在该 folder 下创建任何文件。 :param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 - 的那个作为 monitor 。 + 的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。 :param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的 时间戳文件夹中。如果为 None ,默认使用当前文件夹。 :param save_every_n_epochs: 多少个 epoch 保存一次。 @@ -324,7 +295,7 @@ class TrainerCheckpointCallback(CheckpointCallback): 若 model_save_fn 不为 None,则 fastNLP 只会在每个 folder 下生成 fastnlp_trainer.pkl.tar 文件。 :param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 - 的那个作为 monitor 。 + 的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。 :param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的 时间戳文件夹中。如果为 None ,默认使用当前文件夹。 :param save_every_n_epochs: 多少个 epoch 保存一次。 diff --git a/fastNLP/core/callbacks/early_stop_callback.py b/fastNLP/core/callbacks/early_stop_callback.py new file mode 100644 index 00000000..602236f7 --- /dev/null +++ b/fastNLP/core/callbacks/early_stop_callback.py @@ -0,0 +1,61 @@ +__all__ = [ + 'EarlyStopCallback' +] + +from typing import Dict + +from .callback import HasMonitorCallback +from fastNLP.core.utils.exceptions import EarlyStopException + + +class EarlyStopCallback(HasMonitorCallback): + def __init__(self, monitor:str=None, larger_better:bool=True, patience:int=10): + """ + + :param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。 + :param larger_better: monitor 的值是否是越大越好。 + :param patience: 多少次 validate 不没有提升就停止。 + """ + super(EarlyStopCallback, self).__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True) + self.wait = 0 + self.patience = patience + + def on_validate_end(self, trainer, results): + if len(results)==0: + return + monitor_value = self.get_monitor_value(results) + if self.is_better_monitor_value(monitor_value, keep_if_better=True): + self.wait = 0 + else: + self.wait += 1 + + def on_fetch_data_begin(self, trainer): + # 当是 step validate 的时候,下一步执行的就是这个, 所以在这里检查。 + if self.wait >= self.patience: + raise EarlyStopException(f"After {self.wait} validations, no improvement for " + f"metric `{self._real_monitor}`") + + def on_train_epoch_begin(self, trainer): + # 当是 epoch validate 的时候,下一步执行的就是这个, 所以在这里检查。 + if self.wait >= self.patience: + raise EarlyStopException(f"After {self.wait} validations, no improvement for " + f"metric `{self._real_monitor}`(best value: {self.monitor_value})") + + def on_save_checkpoint(self, trainer) -> Dict: + states = { + 'patience': self.patience, + 'wait': self.wait, + 'monitor': self.monitor, + 'monitor_value': self.monitor_value + } + return states + + def on_load_checkpoint(self, trainer, states): + self.patience = states['patience'] + self.wait = states['wait'] + self.monitor = states['monitor'] + self.monitor_value = float(states['monitor_value']) + + def callback_name(self): + return f'EarlyStopCallback#monitor-{self.monitor}#patience-{self.patience}' + diff --git a/fastNLP/core/callbacks/load_best_model_callback.py b/fastNLP/core/callbacks/load_best_model_callback.py index e7b94f8c..9a4bb65f 100644 --- a/fastNLP/core/callbacks/load_best_model_callback.py +++ b/fastNLP/core/callbacks/load_best_model_callback.py @@ -4,8 +4,7 @@ __all__ = [ import os from typing import Optional, Callable -from .callback import Callback -from .utils import _get_monitor_value +from .callback import HasMonitorCallback from io import BytesIO import shutil @@ -14,15 +13,15 @@ from fastNLP.core.log import logger from fastNLP.envs import all_rank_call -class LoadBestModelCallback(Callback): - def __init__(self, monitor:str, larger_better:bool = True, only_state_dict:bool = True, +class LoadBestModelCallback(HasMonitorCallback): + def __init__(self, monitor:str=None, larger_better:bool = True, only_state_dict:bool = True, save_folder:Optional[str] = None, model_save_fn:Optional[Callable] = None, model_load_fn:Optional[Callable] = None, delete_after_train:bool = True): """ 保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。 - :param str monitor: 监控的 metric 值。 + :param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。 :param larger_better: 该 metric 值是否是越大越好。 :param save_folder: 保存的文件夹,如果为空,则保存在内存中。不为空,则保存一份权重到文件中,当为多机训练,且本值不为空时,请确保 不同的机器均可访问当该路径。当 model_save_fn 不为 None 时该值一定不能为空。 @@ -33,6 +32,7 @@ class LoadBestModelCallback(Callback): 请在函数内完成对模型的加载。 :param delete_after_train: 在训练结束后是否删掉模型。 """ + super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True) if model_load_fn is not None: assert callable(model_load_fn), "`model_load_fn` must be a callable object." assert model_save_fn is not None, "`model_load_fn` and `model_save_fn` must be passed at the same time." @@ -56,15 +56,11 @@ class LoadBestModelCallback(Callback): self.real_save_folder = None self.buffer = BytesIO() - self.monitor = monitor - self.larger_better = larger_better self.save_folder = save_folder self.only_state_dict = only_state_dict self.model_save_fn = model_save_fn self.model_load_fn = model_load_fn self.delete_after_after = delete_after_train - self._real_monitor = None - self.monitor_value = float('-inf') if larger_better else float('inf') def on_after_trainer_initialized(self, trainer, driver): if self.save_folder is not None and driver.is_distributed() and int(os.environ.get(FASTNLP_BACKEND_LAUNCH, 0))==1: @@ -76,13 +72,16 @@ class LoadBestModelCallback(Callback): raise RuntimeError(f"Currently {driver.__class__.__name__} does not support using `save_folder` to " f"save best model when launch using script.") + super().on_after_trainer_initialized(trainer, driver) + + def on_sanity_check_end(self, trainer, sanity_check_res): + self.get_monitor_value(sanity_check_res) + def on_validate_end(self, trainer, results): - self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, - real_monitor=self._real_monitor, - res=results) - if (monitor_value < self.monitor_value and self.larger_better is False) or \ - (monitor_value > self.monitor_value and self.larger_better): - self.monitor_value = monitor_value + if len(results)==0: + return + monitor_value = self.get_monitor_value(results) + if self.is_better_monitor_value(monitor_value, keep_if_better=True): if self.real_save_folder: trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, model_save_fn=self.model_save_fn) diff --git a/fastNLP/core/callbacks/progress_callback.py b/fastNLP/core/callbacks/progress_callback.py index 633fbb09..756d236b 100644 --- a/fastNLP/core/callbacks/progress_callback.py +++ b/fastNLP/core/callbacks/progress_callback.py @@ -8,7 +8,7 @@ __all__ = [ 'RichCallback' ] -from .callback import Callback +from .callback import HasMonitorCallback from fastNLP.core.callbacks.utils import _get_monitor_value from fastNLP.core.utils import f_rich_progress from fastNLP.core.log import logger @@ -28,15 +28,13 @@ def choose_progress_callback(progress_bar:str): return None -class ProgressCallback(Callback): +class ProgressCallback(HasMonitorCallback): def on_train_end(self, trainer): f_rich_progress.stop() def on_sanity_check_end(self, trainer, sanity_check_res): if len(sanity_check_res) and getattr(self, 'monitor', None) is not None: - self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, - real_monitor=self._real_monitor, - res=sanity_check_res) + self.get_monitor_value(sanity_check_res) class RichCallback(ProgressCallback): @@ -46,28 +44,22 @@ class RichCallback(ProgressCallback): :param print_every: 多少个 batch 更新一次显示。 :param loss_round_ndigit: 显示的 loss 保留多少位有效数字 - :param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。 + :param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。如果为 None ,会尝试使用 trainer 中设置的 monitor 。 :param larger_better: 是否是monitor的结果越大越好。 :param format_json: 是否format json再打印 """ - super().__init__() + super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False) self.print_every = print_every self.progress_bar = f_rich_progress self.task2id = {} self.loss = 0 self.loss_round_ndigit = loss_round_ndigit - self.monitor = monitor - self.larger_better = larger_better - if larger_better: - self.monitor_value = float('-inf') - else: - self.monitor_value = float('inf') - self._real_monitor = monitor self.format_json = format_json def on_after_trainer_initialized(self, trainer, driver): if not self.progress_bar.disable: self.progress_bar.set_disable(flag=trainer.driver.get_local_rank() != 0) + super(RichCallback, self).on_after_trainer_initialized(trainer, driver) def on_train_begin(self, trainer): self.task2id['epoch'] = self.progress_bar.add_task(description='Epoch:0', total=trainer.n_epochs, @@ -109,16 +101,12 @@ class RichCallback(ProgressCallback): text_style = '' characters = '-' if self.monitor is not None: - self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, - real_monitor=self._real_monitor, - res=results) - if (self.larger_better and monitor_value > self.monitor_value) or \ - (not self.larger_better and monitor_value < self.monitor_value): + monitor_value = self.get_monitor_value(results) + if self.is_better_monitor_value(monitor_value, keep_if_better=True): if abs(self.monitor_value) != float('inf'): rule_style = 'spring_green3' text_style = '[bold]' characters = '+' - self.monitor_value = monitor_value self.progress_bar.print() self.progress_bar.console.rule(text_style+f"Eval. results on Epoch:{trainer.cur_epoch_idx}, " f"Batch:{trainer.batch_idx_in_epoch}", @@ -151,18 +139,12 @@ class RawTextCallback(ProgressCallback): :param larger_better: 是否是monitor的结果越大越好。 :param format_json: 是否format json再打印 """ - super().__init__() + super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False) self.print_every = print_every self.task2id = {} self.loss = 0 self.loss_round_ndigit = loss_round_ndigit - self.monitor = monitor - self.larger_better = larger_better - if larger_better: - self.monitor_value = float('-inf') - else: - self.monitor_value = float('inf') - self._real_monitor = monitor + self.set_monitor(monitor, larger_better) self.format_json = format_json self.num_signs = 10 @@ -189,14 +171,10 @@ class RawTextCallback(ProgressCallback): base_text = f'Eval. results on Epoch:{trainer.cur_epoch_idx}, Batch:{trainer.batch_idx_in_epoch}' text = '' if self.monitor is not None: - self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, - real_monitor=self._real_monitor, - res=results) - if (self.larger_better and monitor_value > self.monitor_value) or \ - (not self.larger_better and monitor_value < self.monitor_value): + monitor_value = self.get_monitor_value(results) + if self.is_better_monitor_value(monitor_value, keep_if_better=True): if abs(self.monitor_value) != float('inf'): text = '+'*self.num_signs + base_text + '+'*self.num_signs - self.monitor_value = monitor_value if len(text) == 0: text = '-'*self.num_signs + base_text + '-'*self.num_signs diff --git a/fastNLP/core/callbacks/utils.py b/fastNLP/core/callbacks/utils.py index 900aebf6..2720ba3f 100644 --- a/fastNLP/core/callbacks/utils.py +++ b/fastNLP/core/callbacks/utils.py @@ -19,23 +19,31 @@ def _get_monitor_value(monitor: str, real_monitor: Optional[str], res: dict) ->( if monitor in res: return monitor, res[monitor] + if real_monitor in res: + return real_monitor, res[real_monitor] + pairs = [] for idx, (key, value) in enumerate(res.items()): - match = SequenceMatcher(None, key, monitor).find_longest_match(0, len(key), 0, len(monitor)) - pairs.append((key, value, match.size, idx)) + match_size = _match_length(monitor, key) + pairs.append((key, value, match_size, idx)) pairs.sort(key=lambda pair: (pair[2], -pair[3]), reverse=True) key, value, match_size = pairs[0][:3] - if real_monitor is not None and real_monitor in res and real_monitor != key: - # 如果 real_monitor 比新找的更长就继续用之前的。 - match = SequenceMatcher(None, real_monitor, monitor).find_longest_match(0, len(real_monitor), 0, len(monitor)) - if match.size > match_size: - return real_monitor, res[real_monitor] + return key, value + - logger.warning(f"We can not find `{monitor}` in the evaluation result (with keys as {list(res.keys())}), " - f"we use the `{key}` as the monitor.") - real_monitor = key - return real_monitor, value +def _match_length(a:str, b:str)->int: + """ + 需要把长度短的放在前面 + + :param a: + :param b: + :return: + """ + short = a if len(a) < len(b) else b + long = a if len(a)>=len(b) else b + match = SequenceMatcher(None, short, long).find_longest_match(0, len(short), 0, len(long)) + return match.size diff --git a/fastNLP/core/controllers/trainer.py b/fastNLP/core/controllers/trainer.py index a7c38b27..af589cbf 100644 --- a/fastNLP/core/controllers/trainer.py +++ b/fastNLP/core/controllers/trainer.py @@ -25,6 +25,7 @@ from fastNLP.core.utils import check_fn_not_empty_params, get_fn_arg_names, matc from fastNLP.envs import rank_zero_call from fastNLP.core.log import logger from fastNLP.envs import FASTNLP_MODEL_FILENAME +from fastNLP.core.utils.exceptions import EarlyStopException class Trainer(TrainerEventTrigger): @@ -50,6 +51,8 @@ class Trainer(TrainerEventTrigger): model_wo_auto_param_call: bool = False, accumulation_steps: int = 1, fp16: bool = False, + monitor: str = None, + larger_better: bool = True, marker: Optional[str] = None, **kwargs ): @@ -106,6 +109,10 @@ class Trainer(TrainerEventTrigger): 为 False,那么我们会将 batch 直接透传给 forward 函数。注意上述逻辑同样应用于 `train_step`, `validate_step` 和 `test_step`; :param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1; :param fp16: 是否开启混合精度训练;默认为 False; + :param monitor: 当存在 validate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 + 在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 + 的那个作为 monitor 。 + :param larger_better: monitor 的值是否是越大越好。 :param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None; :param kwargs: 一些其它的可能需要的参数; torch_non_blocking: 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking; @@ -213,6 +220,8 @@ class Trainer(TrainerEventTrigger): self.evaluator = None self.epoch_validate = lambda *args, **kwargs: ... self.step_validate = lambda *args, **kwargs: ... + self.monitor = monitor + self.larger_better = larger_better if metrics is not None and validate_dataloaders is not None: if not callable(validate_every) and (not isinstance(validate_every, int) or validate_every == 0): raise ValueError("Parameter 'validate_every' should be set to 'int' type and either < 0 or > 0.") @@ -242,6 +251,7 @@ class Trainer(TrainerEventTrigger): else: # validate_every > 0 self._step_validate_filter = Filter(every=validate_every) + self.metrics = metrics self.validate_every = validate_every @@ -323,6 +333,10 @@ class Trainer(TrainerEventTrigger): self.driver.barrier() self.on_train_end() self.driver.barrier() + + except EarlyStopException as e: + logger.info(f"Catch early stop exception: {e.msg}.") + self.on_exception(e) except KeyboardInterrupt as e: self.driver.on_exception() self.on_exception(e) diff --git a/fastNLP/core/metrics/classify_f1_pre_rec_metric.py b/fastNLP/core/metrics/classify_f1_pre_rec_metric.py index a2a62d66..6298eae2 100644 --- a/fastNLP/core/metrics/classify_f1_pre_rec_metric.py +++ b/fastNLP/core/metrics/classify_f1_pre_rec_metric.py @@ -29,14 +29,16 @@ def _compute_f_pre_rec(beta_square, tp, fn, fp): class ClassifyFPreRecMetric(Metric): - def __init__(self, backend: Union[str, Backend, None] = 'auto', aggregate_when_get_metric: bool = False, - tag_vocab: Vocabulary = None, encoding_type: str = None, ignore_labels: List[str] = None, - only_gross: bool = True, f_type='micro', beta=1) -> None: + def __init__(self, tag_vocab: Vocabulary = None, ignore_labels: List[str] = None, num_class: int = 0, + only_gross: bool = True, f_type='micro', beta=1, backend: Union[str, Backend, None] = 'auto', + aggregate_when_get_metric: bool = False) -> None: super(ClassifyFPreRecMetric, self).__init__(backend=backend, aggregate_when_get_metric=aggregate_when_get_metric) if f_type not in ('micro', 'macro'): raise ValueError("f_type only supports `micro` or `macro`', got {}.".format(f_type)) - + if tag_vocab: + if not isinstance(tag_vocab, Vocabulary): + raise TypeError("tag_vocab can only be fastNLP.Vocabulary, not {}.".format(type(tag_vocab))) self.ignore_labels = ignore_labels self.f_type = f_type self.beta = beta @@ -45,9 +47,32 @@ class ClassifyFPreRecMetric(Metric): self.tag_vocab = tag_vocab - self._tp, self._fp, self._fn = defaultdict(partial(self.register_element, aggregate_method='sum')),\ - defaultdict(partial(self.register_element, aggregate_method='sum')),\ - defaultdict(partial(self.register_element, aggregate_method='sum')) + self._tp = {} + self._fp = {} + self._fn = {} + if tag_vocab: + for word, _ in tag_vocab: + word = word.lower() + if word != 'o': + word = word[2:] + if word in self._true_positives: + continue + self._tp[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum', + backend=backend) + self._fn[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum', + backend=backend) + self._fp[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum', + backend=backend) + elif num_class > 0: + for word in range(num_class): + self._tp[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum', + backend=backend) + self._fn[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum', + backend=backend) + self._fp[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum', + backend=backend) + else: + raise ValueError() def get_metric(self) -> dict: r""" @@ -68,9 +93,11 @@ class ClassifyFPreRecMetric(Metric): tag_name = self.tag_vocab.to_word(tag) else: tag_name = int(tag) - tp = self._tp[tag] - fn = self._fn[tag] - fp = self._fp[tag] + tp = self._tp[tag].get_scalar() + fn = self._fn[tag].get_scalar() + fp = self._fp[tag].get_scalar() + if tp == fn == fp == 0: + continue f, pre, rec = _compute_f_pre_rec(self.beta_square, tp, fn, fp) f_sum += f pre_sum += pre @@ -90,20 +117,29 @@ class ClassifyFPreRecMetric(Metric): if self.f_type == 'micro': f, pre, rec = _compute_f_pre_rec(self.beta_square, - sum(self._tp.values()), - sum(self._fn.values()), - sum(self._fp.values())) + sum(val.get_scalar() for val in self._tp.values()), + sum(val.get_scalar() for val in self._fn.values()), + sum(val.get_scalar() for val in self._fp.values())) evaluate_result['f'] = f evaluate_result['pre'] = pre evaluate_result['rec'] = rec - for key, value in evaluate_result.items(): evaluate_result[key] = round(value, 6) return evaluate_result def update(self, pred, target, seq_len=None): + r""" + evaluate函数将针对一个批次的预测结果做评价指标的累计 + + :param torch.Tensor pred: 预测的tensor, tensor的形状可以是torch.Size([B,]), torch.Size([B, n_classes]), + torch.Size([B, max_len]), 或者torch.Size([B, max_len, n_classes]) + :param torch.Tensor target: 真实值的tensor, tensor的形状可以是Element's can be: torch.Size([B,]), + torch.Size([B,]), torch.Size([B, max_len]), 或者torch.Size([B, max_len]) + :param torch.Tensor seq_len: 序列长度标记, 标记的形状可以是None, None, torch.Size([B]), 或者torch.Size([B]). + 如果mask也被传进来的话seq_len会被忽略. + """ pred = self.tensor2numpy(pred) target = self.tensor2numpy(target) if seq_len is not None: @@ -122,14 +158,14 @@ class ClassifyFPreRecMetric(Metric): f"pred have element numbers: {len(target.flatten())}") pass - elif len(pred.ndim) == len(target.ndim) + 1: + elif pred.ndim == target.ndim + 1: pred = pred.argmax(axis=-1) - if seq_len is None and len(target.ndim) > 1: + if seq_len is None and target.ndim > 1: warnings.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.") else: raise RuntimeError(f"when pred have " - f"size:{pred.ndim}, target should have size: {pred.ndim} or " - f"{pred.ndim[:-1]}, got {target.ndim}.") + f"size:{pred.shape}, target should have size: {pred.shape} or " + f"{pred.shape[:-1]}, got {target.shape}.") if masks is not None: target = target * masks pred = pred * masks @@ -138,5 +174,3 @@ class ClassifyFPreRecMetric(Metric): self._tp[target_idx] += ((pred == target_idx) * (target != target_idx)).sum().item() self._fp[target_idx] += ((pred == target_idx) * (target == target_idx)).sum().item() self._fn[target_idx] += ((pred != target_idx) * (target != target_idx)).sum().item() - - diff --git a/fastNLP/core/utils/exceptions.py b/fastNLP/core/utils/exceptions.py new file mode 100644 index 00000000..afedbcba --- /dev/null +++ b/fastNLP/core/utils/exceptions.py @@ -0,0 +1,10 @@ + +class EarlyStopException(BaseException): + r""" + 用于EarlyStop时从Trainer训练循环中跳出。 + + """ + + def __init__(self, msg): + super(EarlyStopException, self).__init__(msg) + self.msg = msg diff --git a/tests/core/callbacks/test_utils.py b/tests/core/callbacks/test_utils.py index 10aba0e0..fdec93e0 100644 --- a/tests/core/callbacks/test_utils.py +++ b/tests/core/callbacks/test_utils.py @@ -12,32 +12,27 @@ def test_get_monitor_value(): with Capturing() as output: monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res) assert monitor == 'f1' and value==0.2 - assert 'We can not find' not in output[0] # 测试可以匹配,且选择更靠前的 res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4} with Capturing() as output: monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res) assert monitor=='acc#f1' and value==0.2 - assert 'We can not find' in output[0] # 测试monitor匹配不上,使用real_monitor res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4} with Capturing() as output: - monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#rec', res=res) + monitor, value = _get_monitor_value(monitor='acc', real_monitor='acc#rec', res=res) assert monitor=='acc#rec' and value==0.3 - assert 'We can not find' not in output[0] # 测试monitor/real_monitor匹配不上, 重新选择 res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4} with Capturing() as output: monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#r', res=res) assert monitor=='acc#f1' and value==0.2 - assert 'We can not find' in output[0] # 测试partial的位置 res = {"acc#acc": 0.52, "loss#loss": 2} with Capturing() as output: monitor, value = _get_monitor_value(monitor='-loss', real_monitor=None, res=res) assert monitor=='loss#loss' and value==2 - assert 'We can not find' in output[0] diff --git a/tests/core/metrics/test_accuracy_torch.py b/tests/core/metrics/test_accuracy_torch.py index b62200db..ab81cefc 100644 --- a/tests/core/metrics/test_accuracy_torch.py +++ b/tests/core/metrics/test_accuracy_torch.py @@ -15,6 +15,7 @@ from sklearn.metrics import accuracy_score as sklearn_accuracy from fastNLP.core.dataset import DataSet from fastNLP.core.metrics.accuracy import Accuracy from fastNLP.core.metrics.metric import Metric +from .utils import find_free_network_port, setup_ddp, _assert_allclose set_start_method("spawn", force=True) @@ -23,42 +24,6 @@ NUM_PROCESSES = 2 pool = None -def setup_ddp(rank: int, world_size: int, master_port: int) -> None: - """Setup ddp environment.""" - - os.environ["MASTER_ADDR"] = "localhost" - os.environ["MASTER_PORT"] = str(master_port) - print(torch.cuda.device_count()) - if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): - torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) - - -def find_free_network_port() -> int: - """Finds a free port on localhost. - - It is useful in single-node training when we don't want to connect to a real master node but have to set the - `MASTER_PORT` environment variable. - """ - s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) - s.bind(("", 0)) - s.listen(1) - port = s.getsockname()[1] - s.close() - return port - - -def _assert_allclose(my_result: Union[float, np.ndarray], sklearn_result: Union[float, np.ndarray], - atol: float = 1e-8) -> None: - """ - 测试对比结果,这里不用非得是必须数组且维度对应,一些其他情况例如 np.allclose(np.array([[1e10, ], ]), 1e10+1) 也是 True - :param my_result: 可以不限设备等 - :param sklearn_result: - :param atol: - :return: - """ - assert np.allclose(a=my_result, b=sklearn_result, atol=atol) - - def _test(local_rank: int, world_size: int, device: torch.device, diff --git a/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py b/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py new file mode 100644 index 00000000..268adbd3 --- /dev/null +++ b/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py @@ -0,0 +1,177 @@ +from functools import partial +import copy + +import pytest +import torch +import numpy as np +from torch.multiprocessing import Pool, set_start_method + +from fastNLP.core.metrics import ClassifyFPreRecMetric +from fastNLP.core.dataset import DataSet +from .utils import find_free_network_port, setup_ddp + +set_start_method("spawn", force=True) + + +def _test(local_rank: int, world_size: int, device: torch.device, + dataset: DataSet, metric_class, metric_kwargs, metric_result): + metric = metric_class(**metric_kwargs) + # dataset 也类似(每个进程有自己的一个) + dataset = copy.deepcopy(dataset) + metric.to(device) + # 把数据拆到每个 GPU 上,有点模仿 DistributedSampler 的感觉,但这里数据单位是一个 batch(即每个 i 取了一个 batch 到自己的 GPU 上) + for i in range(local_rank, len(dataset), world_size): + pred, tg = dataset[i]['pred'].to(device), dataset[i]['tg'].to(device) + metric.update(pred, tg) + + my_result = metric.get_metric() + for keys in ['f', 'pre', 'rec']: + np.allclose(my_result[keys], metric_result[keys], atol=0.000001) + + +class TestClassfiyFPreRecMetric: + def test_case_1(self): + pred = torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910], + [1.3410, 0.2889, -0.8667, -1.8580, 0.3029], + [0.7459, -1.1957, 0.3231, 0.0308, -0.1847], + [1.1439, -0.0057, 0.8203, 0.0312, -1.0051], + [-0.4870, 0.3215, -0.8290, 0.9221, 0.4683], + [0.9078, 1.0674, -0.5629, 0.3895, 0.8917], + [-0.7743, -0.4041, -0.9026, 0.2112, 1.0892], + [1.8232, -1.4188, -2.5615, -2.4187, 0.5907], + [-1.0592, 0.4164, -0.1192, 1.4238, -0.9258], + [-1.1137, 0.5773, 2.5778, 0.5398, -0.3323], + [-0.3868, -0.5165, 0.2286, -1.3876, 0.5561], + [-0.3304, 1.3619, -1.5744, 0.4902, -0.7661], + [1.8387, 0.5234, 0.4269, 1.3748, -1.2793], + [0.6692, 0.2571, 1.2425, -0.5894, -0.0184], + [0.4165, 0.4084, -0.1280, 1.4489, -2.3058], + [-0.5826, -0.5469, 1.5898, -0.2786, -0.9882], + [-1.5548, -2.2891, 0.2983, -1.2145, -0.1947], + [-0.7222, 2.3543, -0.5801, -0.0640, -1.5614], + [-1.4978, 1.9297, -1.3652, -0.2358, 2.5566], + [0.1561, -0.0316, 0.9331, 1.0363, 2.3949], + [0.2650, -0.8459, 1.3221, 0.1321, -1.1900], + [0.0664, -1.2353, -0.5242, -1.4491, 1.3300], + [-0.2744, 0.0941, 0.7157, 0.1404, 1.2046], + [0.9341, -0.6652, 1.4512, 0.9608, -0.3623], + [-1.1641, 0.0873, 0.1163, -0.2068, -0.7002], + [1.4775, -2.0025, -0.5634, -0.1589, 0.0247], + [1.0151, 1.0304, -0.1042, -0.6955, -0.0629], + [-0.3119, -0.4558, 0.7757, 0.0758, -1.6297], + [1.0654, 0.0313, -0.7716, 0.1194, 0.6913], + [-0.8088, -0.6648, -0.5018, -0.0230, -0.8207], + [-0.7753, -0.3508, 1.6163, 0.7158, 1.5207], + [0.8692, 0.7718, -0.6734, 0.6515, 0.0641]]) + arg_max_pred = torch.argmax(pred, dim=-1) + target = torch.tensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4, 0, 2, 4, 4, 3, 4, 4, 3, + 0, 3, 0, 0, 0, 1, 3, 1]) + + metric = ClassifyFPreRecMetric(f_type='macro', num_class=5) + metric.update(pred, target) + result_dict = metric.get_metric() + f1_score = 0.1882051282051282 + recall = 0.1619047619047619 + pre = 0.23928571428571427 + + ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall} + for keys in ['f', 'pre', 'rec']: + np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001) + + metric = ClassifyFPreRecMetric(f_type='micro', num_class=5) + metric.update(pred, target) + result_dict = metric.get_metric() + f1_score = 0.21875 + recall = 0.21875 + pre = 0.21875 + + ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall} + for keys in ['f', 'pre', 'rec']: + np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001) + + metric = ClassifyFPreRecMetric(only_gross=False, f_type='macro', num_class=5) + metric.update(pred, target) + result_dict = metric.get_metric() + ground_truth = { + '0': {'f1-score': 0.13333333333333333, 'precision': 0.125, 'recall': 0.14285714285714285, 'support': 7}, + '1': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 5}, + '2': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 2}, + '3': {'f1-score': 0.30769230769230765, 'precision': 0.5, 'recall': 0.2222222222222222, 'support': 9}, + '4': {'f1-score': 0.5, 'precision': 0.5714285714285714, 'recall': 0.4444444444444444, 'support': 9}, + 'macro avg': {'f1-score': 0.1882051282051282, 'precision': 0.23928571428571427, + 'recall': 0.1619047619047619, 'support': 32}, + 'micro avg': {'f1-score': 0.21875, 'precision': 0.21875, 'recall': 0.21875, 'support': 32}, + 'weighted avg': {'f1-score': 0.2563301282051282, 'precision': 0.3286830357142857, 'recall': 0.21875, + 'support': 32}} + for keys in result_dict.keys(): + if keys == "f" or "pre" or "rec": + continue + gl = str(keys[-1]) + tmp_d = {"p": "precision", "r": "recall", "f": "f1-score"} + gk = tmp_d[keys[0]] + np.allclose(result_dict[keys], ground_truth[gl][gk], atol=0.000001) + + @pytest.mark.parametrize("f_type, f1_score,recall,pre", + [('macro', 0.1882051282051282, 0.1619047619047619, 0.23928571428571427), + ('micro', 0.21875, 0.21875, 0.21875)]) + def test_case_2(self, f_type, f1_score, recall, pre): + dataset = DataSet({ + 'pred': [torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910], + [1.3410, 0.2889, -0.8667, -1.8580, 0.3029], + [0.7459, -1.1957, 0.3231, 0.0308, -0.1847], + [1.1439, -0.0057, 0.8203, 0.0312, -1.0051], + [-0.4870, 0.3215, -0.8290, 0.9221, 0.4683], + [0.9078, 1.0674, -0.5629, 0.3895, 0.8917], + [-0.7743, -0.4041, -0.9026, 0.2112, 1.0892], + [1.8232, -1.4188, -2.5615, -2.4187, 0.5907], + [-1.0592, 0.4164, -0.1192, 1.4238, -0.9258], + [-1.1137, 0.5773, 2.5778, 0.5398, -0.3323], + [-0.3868, -0.5165, 0.2286, -1.3876, 0.5561], + [-0.3304, 1.3619, -1.5744, 0.4902, -0.7661], + [1.8387, 0.5234, 0.4269, 1.3748, -1.2793], + [0.6692, 0.2571, 1.2425, -0.5894, -0.0184], + [0.4165, 0.4084, -0.1280, 1.4489, -2.3058], + [-0.5826, -0.5469, 1.5898, -0.2786, -0.9882]]), + torch.tensor([ + [-1.5548, -2.2891, 0.2983, -1.2145, -0.1947], + [-0.7222, 2.3543, -0.5801, -0.0640, -1.5614], + [-1.4978, 1.9297, -1.3652, -0.2358, 2.5566], + [0.1561, -0.0316, 0.9331, 1.0363, 2.3949], + [0.2650, -0.8459, 1.3221, 0.1321, -1.1900], + [0.0664, -1.2353, -0.5242, -1.4491, 1.3300], + [-0.2744, 0.0941, 0.7157, 0.1404, 1.2046], + [0.9341, -0.6652, 1.4512, 0.9608, -0.3623], + [-1.1641, 0.0873, 0.1163, -0.2068, -0.7002], + [1.4775, -2.0025, -0.5634, -0.1589, 0.0247], + [1.0151, 1.0304, -0.1042, -0.6955, -0.0629], + [-0.3119, -0.4558, 0.7757, 0.0758, -1.6297], + [1.0654, 0.0313, -0.7716, 0.1194, 0.6913], + [-0.8088, -0.6648, -0.5018, -0.0230, -0.8207], + [-0.7753, -0.3508, 1.6163, 0.7158, 1.5207], + [0.8692, 0.7718, -0.6734, 0.6515, 0.0641] + ])], + 'tg': [ + torch.LongTensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4]), + torch.LongTensor([0, 2, 4, 4, 3, 4, 4, 3, 0, 3, 0, 0, 0, 1, 3, 1]) + ] + }) + metric_kwargs = { + 'f_type': f_type, + 'num_class': 5, + 'only_gross': False, + 'aggregate_when_get_metric': True + } + ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall} + + NUM_PROCESSES = 2 + pool = Pool(processes=NUM_PROCESSES) + master_port = find_free_network_port() + pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)]) + + pool.starmap(partial(_test, dataset=dataset, + metric_class=ClassifyFPreRecMetric, + metric_kwargs=metric_kwargs, + metric_result=ground_truth), + [(rank, NUM_PROCESSES, torch.device(f'cuda:{rank+4}')) for rank in range(NUM_PROCESSES)]) + pool.close() + pool.join() diff --git a/tests/core/metrics/test_span_f1_rec_acc_torch.py b/tests/core/metrics/test_span_f1_rec_acc_torch.py index bc711a54..f0a420d9 100644 --- a/tests/core/metrics/test_span_f1_rec_acc_torch.py +++ b/tests/core/metrics/test_span_f1_rec_acc_torch.py @@ -14,6 +14,7 @@ from torch.multiprocessing import Pool, set_start_method from fastNLP.core.vocabulary import Vocabulary from fastNLP.core.metrics import SpanFPreRecMetric from fastNLP.core.dataset import DataSet +from .utils import find_free_network_port, setup_ddp set_start_method("spawn", force=True) @@ -41,40 +42,6 @@ NUM_PROCESSES = 2 pool = None -def setup_ddp(rank: int, world_size: int, master_port: int) -> None: - """Setup ddp environment.""" - - os.environ["MASTER_ADDR"] = "localhost" - os.environ["MASTER_PORT"] = str(master_port) - if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): - torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) - - -def find_free_network_port() -> int: - """Finds a free port on localhost. - - It is useful in single-node training when we don't want to connect to a real master node but have to set the - `MASTER_PORT` environment variable. - """ - s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) - s.bind(("", 0)) - s.listen(1) - port = s.getsockname()[1] - s.close() - return port - - -# @pytest.fixture(scope='class', autouse=True) -# def pre_process(): -# global pool -# pool = Pool(processes=NUM_PROCESSES) -# master_port = find_free_network_port() -# pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)]) -# yield -# pool.close() -# pool.join() - - def _test(local_rank: int, world_size: int, device: torch.device, diff --git a/tests/core/metrics/utils.py b/tests/core/metrics/utils.py new file mode 100644 index 00000000..10157438 --- /dev/null +++ b/tests/core/metrics/utils.py @@ -0,0 +1,42 @@ +import os, sys +import socket +from typing import Union + +import torch +from torch import distributed +import numpy as np + + +def setup_ddp(rank: int, world_size: int, master_port: int) -> None: + """Setup ddp environment.""" + + os.environ["MASTER_ADDR"] = "localhost" + os.environ["MASTER_PORT"] = str(master_port) + if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): + torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) + + +def find_free_network_port() -> int: + """Finds a free port on localhost. + + It is useful in single-node training when we don't want to connect to a real master node but have to set the + `MASTER_PORT` environment variable. + """ + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.bind(("", 0)) + s.listen(1) + port = s.getsockname()[1] + s.close() + return port + + +def _assert_allclose(my_result: Union[float, np.ndarray], sklearn_result: Union[float, np.ndarray], + atol: float = 1e-8) -> None: + """ + 测试对比结果,这里不用非得是必须数组且维度对应,一些其他情况例如 np.allclose(np.array([[1e10, ], ]), 1e10+1) 也是 True + :param my_result: 可以不限设备等 + :param sklearn_result: + :param atol: + :return: + """ + assert np.allclose(a=my_result, b=sklearn_result, atol=atol)