Browse Source

增加pytest.mark.torch or paddle标记

tags/v1.0.0alpha
MorningForest 3 years ago
parent
commit
0510f31a5e
11 changed files with 19 additions and 2 deletions
  1. +3
    -0
      tests/core/collators/padders/test_get_padder.py
  2. +1
    -0
      tests/core/collators/padders/test_numpy_padder.py
  3. +3
    -1
      tests/core/collators/padders/test_torch_padder.py
  4. +3
    -0
      tests/core/collators/padders/test_utils.py
  5. +2
    -0
      tests/core/collators/test_new_collator.py
  6. +1
    -0
      tests/core/dataloaders/paddle_dataloader/test_fdl.py
  7. +1
    -0
      tests/core/dataloaders/torch_dataloader/test_fdl.py
  8. +1
    -0
      tests/core/metrics/test_accuracy_torch.py
  9. +2
    -1
      tests/core/metrics/test_accutacy_paddle.py
  10. +1
    -0
      tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py
  11. +1
    -0
      tests/core/metrics/test_span_f1_rec_acc_torch.py

+ 3
- 0
tests/core/collators/padders/test_get_padder.py View File

@@ -15,6 +15,8 @@ def test_get_element_shape_dtype():


@pytest.mark.parametrize('backend', ['raw', None, 'numpy', 'torch', 'jittor', 'paddle'])
@pytest.mark.torch
@pytest.mark.paddle
def test_get_padder_run(backend):
if not _NEED_IMPORT_TORCH and backend == 'torch':
pytest.skip("No torch")
@@ -100,6 +102,7 @@ def test_numpy_padder():
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test')


@pytest.mark.torch
def test_torch_padder():
if not _NEED_IMPORT_TORCH:
pytest.skip("No torch.")


+ 1
- 0
tests/core/collators/padders/test_numpy_padder.py View File

@@ -14,6 +14,7 @@ class TestNumpyNumberPadder:
assert (padder(a) == np.array(a)).sum() == 3


@pytest.mark.torch
class TestNumpySequencePadder:
def test_run(self):
padder = NumpySequencePadder(ele_dtype=int, dtype=int, pad_val=-1)


+ 3
- 1
tests/core/collators/padders/test_torch_padder.py View File

@@ -9,6 +9,7 @@ if _NEED_IMPORT_TORCH:
import torch


@pytest.mark.torch
class TestTorchNumberPadder:
def test_run(self):
padder = TorchNumberPadder(ele_dtype=int, dtype=int, pad_val=-1)
@@ -18,6 +19,7 @@ class TestTorchNumberPadder:
assert (t_a == torch.LongTensor(a)).sum() == 3


@pytest.mark.torch
class TestTorchSequencePadder:
def test_run(self):
padder = TorchSequencePadder(ele_dtype=int, dtype=int, pad_val=-1)
@@ -40,7 +42,7 @@ class TestTorchSequencePadder:
padder = TorchSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1)


@pytest.mark.torch
class TestTorchTensorPadder:
def test_run(self):
padder = TorchTensorPadder(ele_dtype=torch.zeros(3).dtype, dtype=int, pad_val=-1)


+ 3
- 0
tests/core/collators/padders/test_utils.py View File

@@ -45,6 +45,7 @@ def test_get_padded_nest_list():
assert np.shape(a) == (2, 3, 2)


@pytest.mark.torch
def test_is_number_or_numpy_number():
assert is_number_or_numpy_number(type(3)) is True
assert is_number_or_numpy_number(type(3.1)) is True
@@ -60,6 +61,7 @@ def test_is_number_or_numpy_number():
assert is_number_or_numpy_number(dtype) is False


@pytest.mark.torch
def test_is_number():
assert is_number(type(3)) is True
assert is_number(type(3.1)) is True
@@ -75,6 +77,7 @@ def test_is_number():
assert is_number(dtype) is False


@pytest.mark.torch
def test_is_numpy_number():
assert is_numpy_number_dtype(type(3)) is False
assert is_numpy_number_dtype(type(3.1)) is False


+ 2
- 0
tests/core/collators/test_new_collator.py View File

@@ -42,6 +42,8 @@ def findListDiff(d1, d2):


class TestCollator:

@pytest.mark.torch
def test_run(self):
dict_batch = [{
'str': '1',


+ 1
- 0
tests/core/dataloaders/paddle_dataloader/test_fdl.py View File

@@ -17,6 +17,7 @@ class RandomDataset(Dataset):
return 10


@pytest.mark.paddle
class TestPaddle:

def test_init(self):


+ 1
- 0
tests/core/dataloaders/torch_dataloader/test_fdl.py View File

@@ -5,6 +5,7 @@ from fastNLP.core.dataset import DataSet
from fastNLP.io.data_bundle import DataBundle


@pytest.mark.torch
class TestFdl:

def test_init_v1(self):


+ 1
- 0
tests/core/metrics/test_accuracy_torch.py View File

@@ -69,6 +69,7 @@ def pre_process():
pool.join()


@pytest.mark.torch
@pytest.mark.parametrize('dataset', [
DataSet({'pred': np.random.randint(low=0, high=1, size=(36, 32)),
'target': np.random.randint(low=0, high=1, size=(36, 32))}),


+ 2
- 1
tests/core/metrics/test_accutacy_paddle.py View File

@@ -8,11 +8,13 @@ import paddle.distributed.fleet as fleet
from fastNLP.core.metrics import Accuracy
from fastNLP.core.drivers.paddle_driver.fleet_launcher import FleetLauncher


############################################################################
#
# 测试 单机单卡情况下的Accuracy
#
############################################################################
@pytest.mark.paddle
def test_accuracy_single():
pred = paddle.to_tensor([[1.19812393, -0.82041764, -0.53517765, -0.73061031, -1.45006669,
0.46514302],
@@ -56,4 +58,3 @@ def test_accuracy_ddp():
pass
elif fleet.is_worker():
print(os.getenv("PADDLE_TRAINER_ID"))


+ 1
- 0
tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py View File

@@ -29,6 +29,7 @@ def _test(local_rank: int, world_size: int, device: torch.device,
np.allclose(my_result[keys], metric_result[keys], atol=0.000001)


@pytest.mark.torch
class TestClassfiyFPreRecMetric:
def test_case_1(self):
pred = torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910],


+ 1
- 0
tests/core/metrics/test_span_f1_rec_acc_torch.py View File

@@ -66,6 +66,7 @@ def _test(local_rank: int,
assert my_result == sklearn_metric


@pytest.mark.torch
class TestSpanFPreRecMetric:

def test_case1(self):


Loading…
Cancel
Save