@@ -15,6 +15,8 @@ def test_get_element_shape_dtype(): | |||||
@pytest.mark.parametrize('backend', ['raw', None, 'numpy', 'torch', 'jittor', 'paddle']) | @pytest.mark.parametrize('backend', ['raw', None, 'numpy', 'torch', 'jittor', 'paddle']) | ||||
@pytest.mark.torch | |||||
@pytest.mark.paddle | |||||
def test_get_padder_run(backend): | def test_get_padder_run(backend): | ||||
if not _NEED_IMPORT_TORCH and backend == 'torch': | if not _NEED_IMPORT_TORCH and backend == 'torch': | ||||
pytest.skip("No torch") | pytest.skip("No torch") | ||||
@@ -100,6 +102,7 @@ def test_numpy_padder(): | |||||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test') | padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test') | ||||
@pytest.mark.torch | |||||
def test_torch_padder(): | def test_torch_padder(): | ||||
if not _NEED_IMPORT_TORCH: | if not _NEED_IMPORT_TORCH: | ||||
pytest.skip("No torch.") | pytest.skip("No torch.") | ||||
@@ -14,6 +14,7 @@ class TestNumpyNumberPadder: | |||||
assert (padder(a) == np.array(a)).sum() == 3 | assert (padder(a) == np.array(a)).sum() == 3 | ||||
@pytest.mark.torch | |||||
class TestNumpySequencePadder: | class TestNumpySequencePadder: | ||||
def test_run(self): | def test_run(self): | ||||
padder = NumpySequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | padder = NumpySequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | ||||
@@ -9,6 +9,7 @@ if _NEED_IMPORT_TORCH: | |||||
import torch | import torch | ||||
@pytest.mark.torch | |||||
class TestTorchNumberPadder: | class TestTorchNumberPadder: | ||||
def test_run(self): | def test_run(self): | ||||
padder = TorchNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | padder = TorchNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | ||||
@@ -18,6 +19,7 @@ class TestTorchNumberPadder: | |||||
assert (t_a == torch.LongTensor(a)).sum() == 3 | assert (t_a == torch.LongTensor(a)).sum() == 3 | ||||
@pytest.mark.torch | |||||
class TestTorchSequencePadder: | class TestTorchSequencePadder: | ||||
def test_run(self): | def test_run(self): | ||||
padder = TorchSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | padder = TorchSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | ||||
@@ -40,7 +42,7 @@ class TestTorchSequencePadder: | |||||
padder = TorchSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | padder = TorchSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | ||||
@pytest.mark.torch | |||||
class TestTorchTensorPadder: | class TestTorchTensorPadder: | ||||
def test_run(self): | def test_run(self): | ||||
padder = TorchTensorPadder(ele_dtype=torch.zeros(3).dtype, dtype=int, pad_val=-1) | padder = TorchTensorPadder(ele_dtype=torch.zeros(3).dtype, dtype=int, pad_val=-1) | ||||
@@ -45,6 +45,7 @@ def test_get_padded_nest_list(): | |||||
assert np.shape(a) == (2, 3, 2) | assert np.shape(a) == (2, 3, 2) | ||||
@pytest.mark.torch | |||||
def test_is_number_or_numpy_number(): | def test_is_number_or_numpy_number(): | ||||
assert is_number_or_numpy_number(type(3)) is True | assert is_number_or_numpy_number(type(3)) is True | ||||
assert is_number_or_numpy_number(type(3.1)) is True | assert is_number_or_numpy_number(type(3.1)) is True | ||||
@@ -60,6 +61,7 @@ def test_is_number_or_numpy_number(): | |||||
assert is_number_or_numpy_number(dtype) is False | assert is_number_or_numpy_number(dtype) is False | ||||
@pytest.mark.torch | |||||
def test_is_number(): | def test_is_number(): | ||||
assert is_number(type(3)) is True | assert is_number(type(3)) is True | ||||
assert is_number(type(3.1)) is True | assert is_number(type(3.1)) is True | ||||
@@ -75,6 +77,7 @@ def test_is_number(): | |||||
assert is_number(dtype) is False | assert is_number(dtype) is False | ||||
@pytest.mark.torch | |||||
def test_is_numpy_number(): | def test_is_numpy_number(): | ||||
assert is_numpy_number_dtype(type(3)) is False | assert is_numpy_number_dtype(type(3)) is False | ||||
assert is_numpy_number_dtype(type(3.1)) is False | assert is_numpy_number_dtype(type(3.1)) is False | ||||
@@ -42,6 +42,8 @@ def findListDiff(d1, d2): | |||||
class TestCollator: | class TestCollator: | ||||
@pytest.mark.torch | |||||
def test_run(self): | def test_run(self): | ||||
dict_batch = [{ | dict_batch = [{ | ||||
'str': '1', | 'str': '1', | ||||
@@ -17,6 +17,7 @@ class RandomDataset(Dataset): | |||||
return 10 | return 10 | ||||
@pytest.mark.paddle | |||||
class TestPaddle: | class TestPaddle: | ||||
def test_init(self): | def test_init(self): | ||||
@@ -5,6 +5,7 @@ from fastNLP.core.dataset import DataSet | |||||
from fastNLP.io.data_bundle import DataBundle | from fastNLP.io.data_bundle import DataBundle | ||||
@pytest.mark.torch | |||||
class TestFdl: | class TestFdl: | ||||
def test_init_v1(self): | def test_init_v1(self): | ||||
@@ -69,6 +69,7 @@ def pre_process(): | |||||
pool.join() | pool.join() | ||||
@pytest.mark.torch | |||||
@pytest.mark.parametrize('dataset', [ | @pytest.mark.parametrize('dataset', [ | ||||
DataSet({'pred': np.random.randint(low=0, high=1, size=(36, 32)), | DataSet({'pred': np.random.randint(low=0, high=1, size=(36, 32)), | ||||
'target': np.random.randint(low=0, high=1, size=(36, 32))}), | 'target': np.random.randint(low=0, high=1, size=(36, 32))}), | ||||
@@ -8,11 +8,13 @@ import paddle.distributed.fleet as fleet | |||||
from fastNLP.core.metrics import Accuracy | from fastNLP.core.metrics import Accuracy | ||||
from fastNLP.core.drivers.paddle_driver.fleet_launcher import FleetLauncher | from fastNLP.core.drivers.paddle_driver.fleet_launcher import FleetLauncher | ||||
############################################################################ | ############################################################################ | ||||
# | # | ||||
# 测试 单机单卡情况下的Accuracy | # 测试 单机单卡情况下的Accuracy | ||||
# | # | ||||
############################################################################ | ############################################################################ | ||||
@pytest.mark.paddle | |||||
def test_accuracy_single(): | def test_accuracy_single(): | ||||
pred = paddle.to_tensor([[1.19812393, -0.82041764, -0.53517765, -0.73061031, -1.45006669, | pred = paddle.to_tensor([[1.19812393, -0.82041764, -0.53517765, -0.73061031, -1.45006669, | ||||
0.46514302], | 0.46514302], | ||||
@@ -56,4 +58,3 @@ def test_accuracy_ddp(): | |||||
pass | pass | ||||
elif fleet.is_worker(): | elif fleet.is_worker(): | ||||
print(os.getenv("PADDLE_TRAINER_ID")) | print(os.getenv("PADDLE_TRAINER_ID")) | ||||
@@ -29,6 +29,7 @@ def _test(local_rank: int, world_size: int, device: torch.device, | |||||
np.allclose(my_result[keys], metric_result[keys], atol=0.000001) | np.allclose(my_result[keys], metric_result[keys], atol=0.000001) | ||||
@pytest.mark.torch | |||||
class TestClassfiyFPreRecMetric: | class TestClassfiyFPreRecMetric: | ||||
def test_case_1(self): | def test_case_1(self): | ||||
pred = torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910], | pred = torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910], | ||||
@@ -66,6 +66,7 @@ def _test(local_rank: int, | |||||
assert my_result == sklearn_metric | assert my_result == sklearn_metric | ||||
@pytest.mark.torch | |||||
class TestSpanFPreRecMetric: | class TestSpanFPreRecMetric: | ||||
def test_case1(self): | def test_case1(self): | ||||