|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- from __future__ import absolute_import, division, print_function
- import tensorflow as tf
-
- __all__ = ['Adadelta', 'Adagrad', 'Adam', 'Adamax', 'Ftrl', 'Nadam', 'RMSprop', 'SGD', 'Momentum', 'Lamb', 'LARS']
-
- # Add module aliases
-
- # learning_rate=0.001, rho=0.95, epsilon=1e-07, name='Adadelta'
- Adadelta = tf.optimizers.Adadelta
-
- # learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,name='Adagrad'
- Adagrad = tf.optimizers.Adagrad
-
- # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False,name='Adam'
- Adam = tf.optimizers.Adam
-
- # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name='Adamax'
- Adamax = tf.optimizers.Adamax
-
- # learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1,
- # l1_regularization_strength=0.0, l2_regularization_strength=0.0, name='Ftrl',l2_shrinkage_regularization_strength=0.0
- Ftrl = tf.optimizers.Ftrl
-
- # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name='Nadam',
- Nadam = tf.optimizers.Nadam
-
- # learning_rate=0.001, rho=0.9, momentum=0.0, epsilon=1e-07, centered=False,name='RMSprop'
- RMSprop = tf.optimizers.RMSprop
-
- # learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD'
- SGD = tf.optimizers.SGD
-
- # learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False
- Momentum = tf.compat.v1.train.MomentumOptimizer
-
-
- def Lamb(**kwargs):
- raise Exception('Lamb optimizer function not implemented')
-
-
- def LARS(**kwargs):
- raise Exception('LARS optimizer function not implemented')
|