#! /usr/bin/python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import tensorflow as tf __all__ = ['Adadelta', 'Adagrad', 'Adam', 'Adamax', 'Ftrl', 'Nadam', 'RMSprop', 'SGD', 'Momentum', 'Lamb', 'LARS'] # Add module aliases # learning_rate=0.001, rho=0.95, epsilon=1e-07, name='Adadelta' Adadelta = tf.optimizers.Adadelta # learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,name='Adagrad' Adagrad = tf.optimizers.Adagrad # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False,name='Adam' Adam = tf.optimizers.Adam # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name='Adamax' Adamax = tf.optimizers.Adamax # learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1, # l1_regularization_strength=0.0, l2_regularization_strength=0.0, name='Ftrl',l2_shrinkage_regularization_strength=0.0 Ftrl = tf.optimizers.Ftrl # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name='Nadam', Nadam = tf.optimizers.Nadam # learning_rate=0.001, rho=0.9, momentum=0.0, epsilon=1e-07, centered=False,name='RMSprop' RMSprop = tf.optimizers.RMSprop # learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD' SGD = tf.optimizers.SGD # learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False Momentum = tf.compat.v1.train.MomentumOptimizer def Lamb(**kwargs): raise Exception('Lamb optimizer function not implemented') def LARS(**kwargs): raise Exception('LARS optimizer function not implemented')