Browse Source

ADD file via upload

master
mbnacwlh3 4 years ago
parent
commit
3372693910
1 changed files with 130 additions and 0 deletions
  1. +130
    -0
      DenseNet.py

+ 130
- 0
DenseNet.py View File

@@ -0,0 +1,130 @@
import tensorflow as tf
class BottleNeck(tf.keras.layers.Layer):
def __init__(self, growth_rate, drop_rate):
super(BottleNeck, self).__init__()
self.bn1 = tf.keras.layers.BatchNormalization()
self.conv1 = tf.keras.layers.Conv2D(filters=4 * growth_rate,
kernel_size=(1, 1),
strides=1,
padding="same")
self.bn2 = tf.keras.layers.BatchNormalization()
self.conv2 = tf.keras.layers.Conv2D(filters=growth_rate,
kernel_size=(3, 3),
strides=1,
padding="same")
self.dropout = tf.keras.layers.Dropout(rate=drop_rate)
self.listLayers = [self.bn1,
tf.keras.layers.Activation("relu"),
self.conv1,
self.bn2,
tf.keras.layers.Activation("relu"),
self.conv2,
self.dropout]
def call(self, x):
y = x
for layer in self.listLayers.layers:
y = layer(y)
y = tf.keras.layers.concatenate([x, y], axis=-1)
return y
class DenseBlock(tf.keras.layers.Layer):
def __init__(self, num_layers, growth_rate, drop_rate=0.5):
super(DenseBlock, self).__init__()
self.num_layers = num_layers
self.growth_rate = growth_rate
self.drop_rate = drop_rate
self.listLayers = []
for _ in range(num_layers):
self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate))
def call(self, x):
for layer in self.listLayers.layers:
x = layer(x)
return x
class TransitionLayer(tf.keras.layers.Layer):
def __init__(self, out_channels):
super(TransitionLayer, self).__init__()
self.bn = tf.keras.layers.BatchNormalization()
self.conv = tf.keras.layers.Conv2D(filters=out_channels,
kernel_size=(1, 1),
strides=1,
padding="same")
self.pool = tf.keras.layers.MaxPool2D(pool_size=(2, 2),
strides=2,
padding="same")
def call(self, inputs):
x = self.bn(inputs)
x = tf.keras.activations.relu(x)
x = self.conv(x)
x = self.pool(x)
return x
class DenseNet(tf.keras.Model):
def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate):
super(DenseNet, self).__init__()
self.conv = tf.keras.layers.Conv2D(filters=num_init_features,
kernel_size=(7, 7),
strides=2,
padding="same")
self.bn = tf.keras.layers.BatchNormalization()
self.pool = tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="same")
self.num_channels = num_init_features
self.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate)
self.num_channels += growth_rate * block_layers[0]
self.num_channels = compression_rate * self.num_channels
self.transition_1 = TransitionLayer(out_channels=int(self.num_channels))
self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate)
self.num_channels += growth_rate * block_layers[1]
self.num_channels = compression_rate * self.num_channels
self.transition_2 = TransitionLayer(out_channels=int(self.num_channels))
self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate)
self.num_channels += growth_rate * block_layers[2]
self.num_channels = compression_rate * self.num_channels
self.transition_3 = TransitionLayer(out_channels=int(self.num_channels))
self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate)
self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
self.fc = tf.keras.layers.Dense(units=10,
activation=tf.keras.activations.softmax)
def call(self, inputs):
x = self.conv(inputs)
x = self.bn(x)
x = tf.keras.activations.relu(x)
x = self.pool(x)
x = self.dense_block_1(x)
x = self.transition_1(x)
x = self.dense_block_2(x)
x = self.transition_2(x)
x = self.dense_block_3(x)
x = self.transition_3(x,)
x = self.dense_block_4(x)
x = self.avgpool(x)
x = self.fc(x)
return x
def densenet():
return DenseNet(num_init_features=64, growth_rate=32, block_layers=[4,4,4,4], compression_rate=0.5, drop_rate=0.5)
mynet=densenet()
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
x_train = x_train.reshape((60000, 28, 28, 1)).astype('float32') / 255
x_test = x_test.reshape((10000, 28, 28, 1)).astype('float32') / 255
mynet.compile(loss='sparse_categorical_crossentropy',
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
history = mynet.fit(x_train, y_train,
batch_size=64,
epochs=5,
validation_split=0.2)
test_scores = mynet.evaluate(x_test, y_test, verbose=2)

Loading…
Cancel
Save