|
- import tensorflow as tf
-
- class BottleNeck(tf.keras.layers.Layer):
- def __init__(self, growth_rate, drop_rate):
- super(BottleNeck, self).__init__()
- self.bn1 = tf.keras.layers.BatchNormalization()
- self.conv1 = tf.keras.layers.Conv2D(filters=4 * growth_rate,
- kernel_size=(1, 1),
- strides=1,
- padding="same")
- self.bn2 = tf.keras.layers.BatchNormalization()
- self.conv2 = tf.keras.layers.Conv2D(filters=growth_rate,
- kernel_size=(3, 3),
- strides=1,
- padding="same")
- self.dropout = tf.keras.layers.Dropout(rate=drop_rate)
-
- self.listLayers = [self.bn1,
- tf.keras.layers.Activation("relu"),
- self.conv1,
- self.bn2,
- tf.keras.layers.Activation("relu"),
- self.conv2,
- self.dropout]
-
- def call(self, x):
- y = x
- for layer in self.listLayers.layers:
- y = layer(y)
- y = tf.keras.layers.concatenate([x, y], axis=-1)
- return y
-
-
- class DenseBlock(tf.keras.layers.Layer):
- def __init__(self, num_layers, growth_rate, drop_rate=0.5):
- super(DenseBlock, self).__init__()
- self.num_layers = num_layers
- self.growth_rate = growth_rate
- self.drop_rate = drop_rate
- self.listLayers = []
- for _ in range(num_layers):
- self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate))
-
- def call(self, x):
- for layer in self.listLayers.layers:
- x = layer(x)
- return x
- class TransitionLayer(tf.keras.layers.Layer):
- def __init__(self, out_channels):
- super(TransitionLayer, self).__init__()
- self.bn = tf.keras.layers.BatchNormalization()
- self.conv = tf.keras.layers.Conv2D(filters=out_channels,
- kernel_size=(1, 1),
- strides=1,
- padding="same")
- self.pool = tf.keras.layers.MaxPool2D(pool_size=(2, 2),
- strides=2,
- padding="same")
-
- def call(self, inputs):
- x = self.bn(inputs)
- x = tf.keras.activations.relu(x)
- x = self.conv(x)
- x = self.pool(x)
- return x
- class DenseNet(tf.keras.Model):
- def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate):
- super(DenseNet, self).__init__()
- self.conv = tf.keras.layers.Conv2D(filters=num_init_features,
- kernel_size=(7, 7),
- strides=2,
- padding="same")
- self.bn = tf.keras.layers.BatchNormalization()
- self.pool = tf.keras.layers.MaxPool2D(pool_size=(3, 3),
- strides=2,
- padding="same")
- self.num_channels = num_init_features
- self.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[0]
- self.num_channels = compression_rate * self.num_channels
- self.transition_1 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[1]
- self.num_channels = compression_rate * self.num_channels
- self.transition_2 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[2]
- self.num_channels = compression_rate * self.num_channels
- self.transition_3 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate)
-
- self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
- self.fc = tf.keras.layers.Dense(units=10,
- activation=tf.keras.activations.softmax)
-
- def call(self, inputs):
- x = self.conv(inputs)
- x = self.bn(x)
- x = tf.keras.activations.relu(x)
- x = self.pool(x)
-
- x = self.dense_block_1(x)
- x = self.transition_1(x)
- x = self.dense_block_2(x)
- x = self.transition_2(x)
- x = self.dense_block_3(x)
- x = self.transition_3(x,)
- x = self.dense_block_4(x)
-
- x = self.avgpool(x)
- x = self.fc(x)
-
- return x
-
- def densenet():
- return DenseNet(num_init_features=64, growth_rate=32, block_layers=[4,4,4,4], compression_rate=0.5, drop_rate=0.5)
- mynet=densenet()
- (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
- x_train = x_train.reshape((60000, 28, 28, 1)).astype('float32') / 255
- x_test = x_test.reshape((10000, 28, 28, 1)).astype('float32') / 255
-
- mynet.compile(loss='sparse_categorical_crossentropy',
- optimizer=tf.keras.optimizers.Adam(),
- metrics=['accuracy'])
-
- history = mynet.fit(x_train, y_train,
- batch_size=64,
- epochs=5,
- validation_split=0.2)
- test_scores = mynet.evaluate(x_test, y_test, verbose=2)
|