|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- from paddle.fluid.initializer import ConstantInitializer
- from paddle.fluid.initializer import UniformInitializer
- from paddle.fluid.initializer import NormalInitializer
- from paddle.fluid.initializer import TruncatedNormalInitializer
- from paddle.fluid.initializer import MSRAInitializer
- import paddle
-
- __all__ = [
- 'Initializer', 'Zeros', 'Ones', 'Constant', 'RandomUniform', 'RandomNormal', 'TruncatedNormal',
- 'deconv2d_bilinear_upsampling_initializer', 'HeNormal'
- ]
-
-
- class Initializer(object):
- """Initializer base class: all initializers inherit from this class.
- """
-
- def __call__(self, shape, dtype=None):
- """Returns a tensor object initialized as specified by the initializer.
-
- Parameters
- ----------
- shape : tuple of int.
- The shape of the tensor.
- dtype : Optional dtype of the tensor.
- If not provided will return tensor of `tl.float32`.
-
- Returns
- -------
-
- """
- raise NotImplementedError
-
- def get_config(self):
- """Returns the configuration of the initializer as a JSON-serializable dict.
-
- Returns
- -------
- A JSON-serializable Python dict.
- """
- return {}
-
- @classmethod
- def from_config(cls, config):
- """Instantiates an initializer from a configuration dictionary.
-
- Parameters
- ----------
- config : A python dictionary.
- It will typically be the output of `get_config`.
-
- Returns
- -------
- An Initializer instance.
- """
- if 'dtype' in config:
- config.pop('dtype')
- return cls(**config)
-
-
- class Zeros(ConstantInitializer):
- """Initializer that generates tensors initialized to 0.
- """
-
- def __init__(self):
- super(Zeros, self).__init__(value=0.0, force_cpu=False)
-
-
- class Ones(object):
- """Initializer that generates tensors initialized to 1.
- """
-
- def __init__(self):
- # super(Ones, self).__init__(value=1.0, force_cpu=False)
- pass
-
- def __call__(self, shape, dtype):
- return paddle.ones(shape=shape, dtype=dtype)
-
-
- class Constant(ConstantInitializer):
- """Initializer that generates tensors initialized to a constant value.
-
- Parameters
- ----------
- value : A python scalar or a numpy array.
- The assigned value.
-
- """
-
- def __init__(self, value=0.0):
- if value is None:
- raise ValueError("value must not be none.")
- super(Constant, self).__init__(value=value, force_cpu=False)
- self.value = value
-
- def get_config(self):
- return {"value": self.value}
-
-
- class RandomUniform(UniformInitializer):
- """Initializer that generates tensors with a uniform distribution.
-
- Parameters
- ----------
- minval : A python scalar or a scalar tensor.
- Lower bound of the range of random values to generate.
- maxval : A python scalar or a scalar tensor.
- Upper bound of the range of random values to generate.
- seed : A Python integer.
- Used to seed the random generator.
-
- """
-
- def __init__(self, minval=-0.05, maxval=0.05, seed=0):
- assert minval is not None, 'low should not be None'
- assert maxval is not None, 'high should not be None'
- assert maxval >= minval, 'high should greater or equal than low'
- super(RandomUniform, self).__init__(low=minval, high=maxval, seed=seed, diag_num=0, diag_step=0, diag_val=1.0)
- self.minval = minval
- self.maxval = maxval
- self.seed = seed
-
- def get_config(self):
- return {"minval": self.minval, "maxval": self.maxval, "seed": self.seed}
-
-
- class RandomNormal(NormalInitializer):
- """Initializer that generates tensors with a normal distribution.
-
- Parameters
- ----------
- mean : A python scalar or a scalar tensor.
- Mean of the random values to generate.
- stddev : A python scalar or a scalar tensor.
- Standard deviation of the random values to generate.
- seed : A Python integer.
- Used to seed the random generator.
- """
-
- def __init__(self, mean=0.0, stddev=0.05, seed=0):
- assert mean is not None, 'mean should not be None'
- assert stddev is not None, 'std should not be None'
- super(RandomNormal, self).__init__(loc=mean, scale=stddev, seed=seed)
- self.mean = mean
- self.stddev = stddev
- self.seed = seed
-
- def get_config(self):
- return {"mean": self.mean, "stddev": self.stddev, "seed": self.seed}
-
-
- class TruncatedNormal(TruncatedNormalInitializer):
- """Initializer that generates a truncated normal distribution.
-
- These values are similar to values from a `RandomNormal`
- except that values more than two standard deviations from the mean
- are discarded and re-drawn. This is the recommended initializer for
- neural network weights and filters.
-
-
- Parameters
- ----------
- mean : A python scalar or a scalar tensor.
- Mean of the random values to generate.
- stddev : A python scalar or a scalar tensor.
- Standard deviation of the andom values to generate.
- seed : A Python integer.
- Used to seed the random generator.
- """
-
- def __init__(self, mean=0.0, stddev=0.05, seed=0):
- assert mean is not None, 'mean should not be None'
- assert stddev is not None, 'std should not be None'
- super(TruncatedNormal, self).__init__(loc=mean, scale=stddev, seed=seed)
- self.mean = mean
- self.stddev = stddev
- self.seed = seed
-
- def get_config(self):
- return {"mean": self.mean, "stddev": self.stddev, "seed": self.seed}
-
-
- class HeNormal(MSRAInitializer):
- """He normal initializer.
-
- Parameters
- ----------
- seed : A Python integer.
- Used to seed the random generator.
-
- """
-
- def __init__(self, seed=0):
- super(HeNormal, self).__init__(uniform=False, fan_in=None, seed=seed)
- self.seed = seed
-
- def get_config(self):
- return {"seed", self.seed}
-
-
- def deconv2d_bilinear_upsampling_initializer(shape):
- """Returns the initializer that can be passed to DeConv2dLayer for initializing the
- weights in correspondence to channel-wise bilinear up-sampling.
- Used in segmentation approaches such as [FCN](https://arxiv.org/abs/1605.06211)
-
- Parameters
- ----------
- shape : tuple of int
- The shape of the filters, [height, width, output_channels, in_channels].
- It must match the shape passed to DeConv2dLayer.
-
- Returns
- -------
- ``tf.constant_initializer``
- A constant initializer with weights set to correspond to per channel bilinear upsampling
- when passed as W_int in DeConv2dLayer
-
- """
- raise NotImplementedError
|