You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_layers_recurrent.py 36 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. import os
  4. import unittest
  5. os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
  6. import numpy as np
  7. import tensorlayer as tl
  8. from tests.utils import CustomTestCase
  9. class Layer_RNN_Test(CustomTestCase):
  10. @classmethod
  11. def setUpClass(cls):
  12. cls.batch_size = 2
  13. cls.vocab_size = 20
  14. cls.embedding_size = 4
  15. cls.hidden_size = 8
  16. cls.num_steps = 6
  17. cls.data_n_steps = np.random.randint(low=cls.num_steps // 2, high=cls.num_steps + 1, size=cls.batch_size)
  18. cls.data_x = np.random.random([cls.batch_size, cls.num_steps, cls.embedding_size]).astype(np.float32)
  19. for i in range(cls.batch_size):
  20. for j in range(cls.data_n_steps[i], cls.num_steps):
  21. cls.data_x[i][j][:] = 0
  22. cls.data_y = np.zeros([cls.batch_size, 1]).astype(np.float32)
  23. cls.data_y2 = np.zeros([cls.batch_size, cls.num_steps]).astype(np.float32)
  24. map1 = np.random.random([1, cls.num_steps])
  25. map2 = np.random.random([cls.embedding_size, 1])
  26. for i in range(cls.batch_size):
  27. cls.data_y[i] = np.matmul(map1, np.matmul(cls.data_x[i], map2))
  28. cls.data_y2[i] = np.matmul(cls.data_x[i], map2)[:, 0]
  29. @classmethod
  30. def tearDownClass(cls):
  31. pass
  32. def test_basic_simplernn(self):
  33. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  34. rnnlayer = tl.layers.RNN(
  35. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1), return_last_output=True,
  36. return_seq_2d=False, return_last_state=True
  37. )
  38. rnn, rnn_state = rnnlayer(inputs)
  39. outputs = tl.layers.Dense(n_units=1)(rnn)
  40. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn_state[0]])
  41. print(rnn_model)
  42. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  43. rnn_model.train()
  44. assert rnnlayer.is_train
  45. for epoch in range(50):
  46. with tf.GradientTape() as tape:
  47. pred_y, final_state = rnn_model(self.data_x)
  48. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  49. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  50. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  51. if (epoch + 1) % 10 == 0:
  52. print("epoch %d, loss %f" % (epoch, loss))
  53. def test_basic_simplernn_class(self):
  54. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  55. rnnlayer = tl.layers.SimpleRNN(
  56. units=self.hidden_size, dropout=0.1, return_last_output=True, return_seq_2d=False, return_last_state=True
  57. )
  58. rnn, rnn_state = rnnlayer(inputs)
  59. outputs = tl.layers.Dense(n_units=1)(rnn)
  60. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn_state[0]])
  61. print(rnn_model)
  62. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  63. rnn_model.train()
  64. assert rnnlayer.is_train
  65. for epoch in range(50):
  66. with tf.GradientTape() as tape:
  67. pred_y, final_state = rnn_model(self.data_x)
  68. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  69. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  70. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  71. if (epoch + 1) % 10 == 0:
  72. print("epoch %d, loss %f" % (epoch, loss))
  73. def test_basic_simplernn2(self):
  74. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  75. rnnlayer = tl.layers.RNN(
  76. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1), return_last_output=False,
  77. return_seq_2d=True, return_last_state=False
  78. )
  79. rnn = rnnlayer(inputs)
  80. outputs = tl.layers.Dense(n_units=1)(rnn)
  81. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn])
  82. print(rnn_model)
  83. rnn_model.eval()
  84. assert not rnnlayer.is_train
  85. pred_y, rnn_y = rnn_model(self.data_x)
  86. self.assertEqual(pred_y.get_shape().as_list(), [self.batch_size * self.num_steps, 1])
  87. self.assertEqual(rnn_y.get_shape().as_list(), [self.batch_size * self.num_steps, self.hidden_size])
  88. def test_basic_simplernn3(self):
  89. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  90. rnnlayer = tl.layers.RNN(
  91. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1), return_last_output=False,
  92. return_seq_2d=False, return_last_state=False
  93. )
  94. rnn = rnnlayer(inputs)
  95. rnn_model = tl.models.Model(inputs=inputs, outputs=rnn)
  96. print(rnn_model)
  97. rnn_model.eval()
  98. assert not rnnlayer.is_train
  99. rnn_y = rnn_model(self.data_x)
  100. self.assertEqual(rnn_y.get_shape().as_list(), [self.batch_size, self.num_steps, self.hidden_size])
  101. def test_basic_simplernn_dynamic(self):
  102. class CustomisedModel(tl.models.Model):
  103. def __init__(self):
  104. super(CustomisedModel, self).__init__()
  105. self.rnnlayer = tl.layers.RNN(
  106. cell=tf.keras.layers.SimpleRNNCell(units=8, dropout=0.1), in_channels=4, return_last_output=False,
  107. return_seq_2d=False, return_last_state=False
  108. )
  109. self.dense = tl.layers.Dense(in_channels=8, n_units=1)
  110. def forward(self, x):
  111. z = self.rnnlayer(x)
  112. z = self.dense(z[:, -1, :])
  113. return z
  114. rnn_model = CustomisedModel()
  115. print(rnn_model)
  116. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  117. rnn_model.train()
  118. for epoch in range(50):
  119. with tf.GradientTape() as tape:
  120. pred_y = rnn_model(self.data_x)
  121. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  122. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  123. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  124. if (epoch + 1) % 10 == 0:
  125. print("epoch %d, loss %f" % (epoch, loss))
  126. def test_basic_simplernn_dynamic_class(self):
  127. class CustomisedModel(tl.models.Model):
  128. def __init__(self):
  129. super(CustomisedModel, self).__init__()
  130. self.rnnlayer = tl.layers.SimpleRNN(
  131. units=8, dropout=0.1, in_channels=4, return_last_output=False, return_seq_2d=False,
  132. return_last_state=False
  133. )
  134. self.dense = tl.layers.Dense(in_channels=8, n_units=1)
  135. def forward(self, x):
  136. z = self.rnnlayer(x)
  137. z = self.dense(z[:, -1, :])
  138. return z
  139. rnn_model = CustomisedModel()
  140. print(rnn_model)
  141. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  142. rnn_model.train()
  143. for epoch in range(50):
  144. with tf.GradientTape() as tape:
  145. pred_y = rnn_model(self.data_x)
  146. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  147. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  148. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  149. if (epoch + 1) % 10 == 0:
  150. print("epoch %d, loss %f" % (epoch, loss))
  151. def test_basic_simplernn_dynamic_2(self):
  152. class CustomisedModel(tl.models.Model):
  153. def __init__(self):
  154. super(CustomisedModel, self).__init__()
  155. self.rnnlayer = tl.layers.RNN(
  156. cell=tf.keras.layers.SimpleRNNCell(units=8, dropout=0.1), in_channels=4, return_last_output=False,
  157. return_seq_2d=False, return_last_state=False
  158. )
  159. self.dense = tl.layers.Dense(in_channels=8, n_units=1)
  160. def forward(self, x):
  161. z = self.rnnlayer(x, return_seq_2d=True)
  162. z = self.dense(z[-2:, :])
  163. return z
  164. rnn_model = CustomisedModel()
  165. print(rnn_model)
  166. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  167. rnn_model.train()
  168. assert rnn_model.rnnlayer.is_train
  169. for epoch in range(50):
  170. with tf.GradientTape() as tape:
  171. pred_y = rnn_model(self.data_x)
  172. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  173. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  174. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  175. if (epoch + 1) % 10 == 0:
  176. print("epoch %d, loss %f" % (epoch, loss))
  177. def test_basic_simplernn_dynamic_3(self):
  178. class CustomisedModel(tl.models.Model):
  179. def __init__(self):
  180. super(CustomisedModel, self).__init__()
  181. self.rnnlayer1 = tl.layers.RNN(
  182. cell=tf.keras.layers.SimpleRNNCell(units=8, dropout=0.1), in_channels=4, return_last_output=True,
  183. return_last_state=True
  184. )
  185. self.rnnlayer2 = tl.layers.RNN(
  186. cell=tf.keras.layers.SimpleRNNCell(units=8, dropout=0.1), in_channels=4, return_last_output=True,
  187. return_last_state=False
  188. )
  189. self.dense = tl.layers.Dense(in_channels=8, n_units=1)
  190. def forward(self, x):
  191. _, state = self.rnnlayer1(x[:, :2, :])
  192. z = self.rnnlayer2(x[:, 2:, :], initial_state=state)
  193. z = self.dense(z)
  194. return z
  195. rnn_model = CustomisedModel()
  196. print(rnn_model)
  197. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  198. rnn_model.train()
  199. assert rnn_model.rnnlayer1.is_train
  200. assert rnn_model.rnnlayer2.is_train
  201. for epoch in range(50):
  202. with tf.GradientTape() as tape:
  203. pred_y = rnn_model(self.data_x)
  204. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  205. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  206. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  207. if (epoch + 1) % 10 == 0:
  208. print("epoch %d, loss %f" % (epoch, loss))
  209. def test_basic_lstmrnn(self):
  210. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  211. rnnlayer = tl.layers.RNN(
  212. cell=tf.keras.layers.LSTMCell(units=self.hidden_size, dropout=0.1), return_last_output=True,
  213. return_seq_2d=False, return_last_state=True
  214. )
  215. rnn, rnn_state = rnnlayer(inputs)
  216. outputs = tl.layers.Dense(n_units=1)(rnn)
  217. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn_state[0], rnn_state[1]])
  218. print(rnn_model)
  219. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  220. rnn_model.train()
  221. for epoch in range(50):
  222. with tf.GradientTape() as tape:
  223. pred_y, final_h, final_c = rnn_model(self.data_x)
  224. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  225. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  226. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  227. if (epoch + 1) % 10 == 0:
  228. print("epoch %d, loss %f" % (epoch, loss))
  229. def test_basic_lstmrnn_class(self):
  230. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  231. rnnlayer = tl.layers.LSTMRNN(
  232. units=self.hidden_size, dropout=0.1, return_last_output=True, return_seq_2d=False, return_last_state=True
  233. )
  234. rnn, rnn_state = rnnlayer(inputs)
  235. outputs = tl.layers.Dense(n_units=1)(rnn)
  236. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn_state[0], rnn_state[1]])
  237. print(rnn_model)
  238. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  239. rnn_model.train()
  240. for epoch in range(50):
  241. with tf.GradientTape() as tape:
  242. pred_y, final_h, final_c = rnn_model(self.data_x)
  243. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  244. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  245. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  246. if (epoch + 1) % 10 == 0:
  247. print("epoch %d, loss %f" % (epoch, loss))
  248. def test_basic_grurnn(self):
  249. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  250. rnnlayer = tl.layers.RNN(
  251. cell=tf.keras.layers.GRUCell(units=self.hidden_size, dropout=0.1), return_last_output=True,
  252. return_seq_2d=False, return_last_state=True
  253. )
  254. rnn, rnn_state = rnnlayer(inputs)
  255. outputs = tl.layers.Dense(n_units=1)(rnn)
  256. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn_state[0]])
  257. print(rnn_model)
  258. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  259. rnn_model.train()
  260. for epoch in range(50):
  261. with tf.GradientTape() as tape:
  262. pred_y, final_h = rnn_model(self.data_x)
  263. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  264. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  265. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  266. if (epoch + 1) % 10 == 0:
  267. print("epoch %d, loss %f" % (epoch, loss))
  268. def test_basic_grurnn_class(self):
  269. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  270. rnnlayer = tl.layers.GRURNN(
  271. units=self.hidden_size, dropout=0.1, return_last_output=True, return_seq_2d=False, return_last_state=True
  272. )
  273. rnn, rnn_state = rnnlayer(inputs)
  274. outputs = tl.layers.Dense(n_units=1)(rnn)
  275. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn_state[0]])
  276. print(rnn_model)
  277. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  278. rnn_model.train()
  279. for epoch in range(50):
  280. with tf.GradientTape() as tape:
  281. pred_y, final_h = rnn_model(self.data_x)
  282. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  283. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  284. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  285. if (epoch + 1) % 10 == 0:
  286. print("epoch %d, loss %f" % (epoch, loss))
  287. def test_basic_birnn_simplernncell(self):
  288. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  289. rnnlayer = tl.layers.BiRNN(
  290. fw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1),
  291. bw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size + 1,
  292. dropout=0.1), return_seq_2d=True, return_last_state=True
  293. )
  294. rnn, rnn_fw_state, rnn_bw_state = rnnlayer(inputs)
  295. dense = tl.layers.Dense(n_units=1)(rnn)
  296. outputs = tl.layers.Reshape([-1, self.num_steps])(dense)
  297. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn, rnn_fw_state[0], rnn_bw_state[0]])
  298. print(rnn_model)
  299. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  300. rnn_model.train()
  301. assert rnnlayer.is_train
  302. for epoch in range(50):
  303. with tf.GradientTape() as tape:
  304. pred_y, r, rfw, rbw = rnn_model(self.data_x)
  305. loss = tl.cost.mean_squared_error(pred_y, self.data_y2)
  306. self.assertEqual(
  307. r.get_shape().as_list(), [self.batch_size * self.num_steps, self.hidden_size + self.hidden_size + 1]
  308. )
  309. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  310. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  311. if (epoch + 1) % 10 == 0:
  312. print("epoch %d, loss %f" % (epoch, loss))
  313. def test_basic_birnn_lstmcell(self):
  314. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  315. rnnlayer = tl.layers.BiRNN(
  316. fw_cell=tf.keras.layers.LSTMCell(units=self.hidden_size, dropout=0.1),
  317. bw_cell=tf.keras.layers.LSTMCell(units=self.hidden_size + 1,
  318. dropout=0.1), return_seq_2d=False, return_last_state=True
  319. )
  320. rnn, rnn_fw_state, rnn_bw_state = rnnlayer(inputs)
  321. din = tl.layers.Reshape([-1, self.hidden_size + self.hidden_size + 1])(rnn)
  322. dense = tl.layers.Dense(n_units=1)(din)
  323. outputs = tl.layers.Reshape([-1, self.num_steps])(dense)
  324. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn, rnn_fw_state[0], rnn_bw_state[0]])
  325. print(rnn_model)
  326. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  327. rnn_model.train()
  328. assert rnnlayer.is_train
  329. for epoch in range(50):
  330. with tf.GradientTape() as tape:
  331. pred_y, r, rfw, rbw = rnn_model(self.data_x)
  332. loss = tl.cost.mean_squared_error(pred_y, self.data_y2)
  333. self.assertEqual(
  334. r.get_shape().as_list(), [self.batch_size, self.num_steps, self.hidden_size + self.hidden_size + 1]
  335. )
  336. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  337. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  338. if (epoch + 1) % 10 == 0:
  339. print("epoch %d, loss %f" % (epoch, loss))
  340. def test_basic_birnn_grucell(self):
  341. class CustomisedModel(tl.models.Model):
  342. def __init__(self):
  343. super(CustomisedModel, self).__init__()
  344. self.rnnlayer = tl.layers.BiRNN(
  345. fw_cell=tf.keras.layers.GRUCell(units=8,
  346. dropout=0.1), bw_cell=tf.keras.layers.GRUCell(units=8, dropout=0.1),
  347. in_channels=4, return_seq_2d=False, return_last_state=False
  348. )
  349. self.dense = tl.layers.Dense(in_channels=16, n_units=1)
  350. self.reshape = tl.layers.Reshape([-1, 6])
  351. def forward(self, x):
  352. z = self.rnnlayer(x, return_seq_2d=True)
  353. z = self.dense(z)
  354. z = self.reshape(z)
  355. return z
  356. rnn_model = CustomisedModel()
  357. print(rnn_model)
  358. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  359. rnn_model.train()
  360. for epoch in range(50):
  361. with tf.GradientTape() as tape:
  362. pred_y = rnn_model(self.data_x)
  363. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  364. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  365. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  366. if (epoch + 1) % 10 == 0:
  367. print("epoch %d, loss %f" % (epoch, loss))
  368. def test_stack_simplernn(self):
  369. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  370. rnnlayer1 = tl.layers.RNN(
  371. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1), return_last_output=False,
  372. return_seq_2d=False, return_last_state=False
  373. )
  374. rnn1 = rnnlayer1(inputs)
  375. rnnlayer2 = tl.layers.RNN(
  376. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1), return_last_output=True,
  377. return_seq_2d=False, return_last_state=False
  378. )
  379. rnn2 = rnnlayer2(rnn1)
  380. outputs = tl.layers.Dense(n_units=1)(rnn2)
  381. rnn_model = tl.models.Model(inputs=inputs, outputs=outputs)
  382. print(rnn_model)
  383. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  384. rnn_model.train()
  385. assert rnnlayer1.is_train
  386. assert rnnlayer2.is_train
  387. for epoch in range(50):
  388. with tf.GradientTape() as tape:
  389. pred_y = rnn_model(self.data_x)
  390. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  391. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  392. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  393. if (epoch + 1) % 10 == 0:
  394. print("epoch %d, loss %f" % (epoch, loss))
  395. def test_stack_birnn_simplernncell(self):
  396. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  397. rnnlayer = tl.layers.BiRNN(
  398. fw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1),
  399. bw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size + 1,
  400. dropout=0.1), return_seq_2d=False, return_last_state=False
  401. )
  402. rnn = rnnlayer(inputs)
  403. rnnlayer2 = tl.layers.BiRNN(
  404. fw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.1),
  405. bw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size + 1,
  406. dropout=0.1), return_seq_2d=True, return_last_state=False
  407. )
  408. rnn2 = rnnlayer2(rnn)
  409. dense = tl.layers.Dense(n_units=1)(rnn2)
  410. outputs = tl.layers.Reshape([-1, self.num_steps])(dense)
  411. rnn_model = tl.models.Model(inputs=inputs, outputs=outputs)
  412. print(rnn_model)
  413. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  414. rnn_model.train()
  415. assert rnnlayer.is_train
  416. assert rnnlayer2.is_train
  417. for epoch in range(50):
  418. with tf.GradientTape() as tape:
  419. pred_y = rnn_model(self.data_x)
  420. loss = tl.cost.mean_squared_error(pred_y, self.data_y2)
  421. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  422. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  423. if (epoch + 1) % 10 == 0:
  424. print("epoch %d, loss %f" % (epoch, loss))
  425. def test_basic_simplernn_dropout_1(self):
  426. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  427. rnnlayer = tl.layers.RNN(
  428. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.5), return_last_output=True,
  429. return_seq_2d=False, return_last_state=False
  430. )
  431. rnn = rnnlayer(inputs)
  432. outputs = tl.layers.Dense(n_units=1)(rnn)
  433. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn])
  434. print(rnn_model)
  435. rnn_model.train()
  436. assert rnnlayer.is_train
  437. pred_y, rnn_1 = rnn_model(self.data_x)
  438. pred_y, rnn_2 = rnn_model(self.data_x)
  439. self.assertFalse(np.allclose(rnn_1, rnn_2))
  440. rnn_model.eval()
  441. assert not rnnlayer.is_train
  442. pred_y_1, rnn_1 = rnn_model(self.data_x)
  443. pred_y_2, rnn_2 = rnn_model(self.data_x)
  444. self.assertTrue(np.allclose(rnn_1, rnn_2))
  445. def test_basic_simplernn_dropout_2(self):
  446. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  447. rnnlayer = tl.layers.RNN(
  448. cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, recurrent_dropout=0.5), return_last_output=True,
  449. return_seq_2d=False, return_last_state=False
  450. )
  451. rnn = rnnlayer(inputs)
  452. outputs = tl.layers.Dense(n_units=1)(rnn)
  453. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn])
  454. print(rnn_model)
  455. rnn_model.train()
  456. assert rnnlayer.is_train
  457. pred_y, rnn_1 = rnn_model(self.data_x)
  458. pred_y, rnn_2 = rnn_model(self.data_x)
  459. self.assertFalse(np.allclose(rnn_1, rnn_2))
  460. rnn_model.eval()
  461. assert not rnnlayer.is_train
  462. pred_y_1, rnn_1 = rnn_model(self.data_x)
  463. pred_y_2, rnn_2 = rnn_model(self.data_x)
  464. self.assertTrue(np.allclose(rnn_1, rnn_2))
  465. def test_basic_birnn_simplernn_dropout_1(self):
  466. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  467. rnnlayer = tl.layers.BiRNN(
  468. fw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, dropout=0.5),
  469. bw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size,
  470. dropout=0.5), return_seq_2d=True, return_last_state=False
  471. )
  472. rnn = rnnlayer(inputs)
  473. outputs = tl.layers.Dense(n_units=1)(rnn)
  474. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn])
  475. print(rnn_model)
  476. rnn_model.train()
  477. assert rnnlayer.is_train
  478. pred_y, rnn_1 = rnn_model(self.data_x)
  479. pred_y, rnn_2 = rnn_model(self.data_x)
  480. self.assertFalse(np.allclose(rnn_1, rnn_2))
  481. rnn_model.eval()
  482. assert not rnnlayer.is_train
  483. pred_y_1, rnn_1 = rnn_model(self.data_x)
  484. pred_y_2, rnn_2 = rnn_model(self.data_x)
  485. self.assertTrue(np.allclose(rnn_1, rnn_2))
  486. def test_basic_birnn_simplernn_dropout_2(self):
  487. inputs = tl.layers.Input([self.batch_size, self.num_steps, self.embedding_size])
  488. rnnlayer = tl.layers.BiRNN(
  489. fw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size, recurrent_dropout=0.5),
  490. bw_cell=tf.keras.layers.SimpleRNNCell(units=self.hidden_size,
  491. recurrent_dropout=0.5), return_seq_2d=True, return_last_state=False
  492. )
  493. rnn = rnnlayer(inputs)
  494. outputs = tl.layers.Dense(n_units=1)(rnn)
  495. rnn_model = tl.models.Model(inputs=inputs, outputs=[outputs, rnn])
  496. print(rnn_model)
  497. rnn_model.train()
  498. assert rnnlayer.is_train
  499. pred_y, rnn_1 = rnn_model(self.data_x)
  500. pred_y, rnn_2 = rnn_model(self.data_x)
  501. self.assertFalse(np.allclose(rnn_1, rnn_2))
  502. rnn_model.eval()
  503. assert not rnnlayer.is_train
  504. pred_y_1, rnn_1 = rnn_model(self.data_x)
  505. pred_y_2, rnn_2 = rnn_model(self.data_x)
  506. self.assertTrue(np.allclose(rnn_1, rnn_2))
  507. def test_sequence_length(self):
  508. data = [[[1], [2], [0], [0], [0]], [[1], [2], [3], [0], [0]], [[1], [2], [6], [1], [0]]]
  509. data = tf.convert_to_tensor(data, dtype=tf.float32)
  510. length = tl.layers.retrieve_seq_length_op(data)
  511. print(length)
  512. data = [
  513. [[1, 2], [2, 2], [1, 2], [1, 2], [0, 0]], [[2, 3], [2, 4], [3, 2], [0, 0], [0, 0]],
  514. [[3, 3], [2, 2], [5, 3], [1, 2], [0, 0]]
  515. ]
  516. data = tf.convert_to_tensor(data, dtype=tf.float32)
  517. length = tl.layers.retrieve_seq_length_op(data)
  518. print(length)
  519. def test_sequence_length2(self):
  520. data = [[1, 2, 0, 0, 0], [1, 2, 3, 0, 0], [1, 2, 6, 1, 0]]
  521. data = tf.convert_to_tensor(data, dtype=tf.float32)
  522. length = tl.layers.retrieve_seq_length_op2(data)
  523. print(length)
  524. def test_sequence_length3(self):
  525. data = [[[1], [2], [0], [0], [0]], [[1], [2], [3], [0], [0]], [[1], [2], [6], [1], [0]]]
  526. data = tf.convert_to_tensor(data, dtype=tf.float32)
  527. length = tl.layers.retrieve_seq_length_op3(data)
  528. print(length)
  529. data = [
  530. [[1, 2], [2, 2], [1, 2], [1, 2], [0, 0]], [[2, 3], [2, 4], [3, 2], [0, 0], [0, 0]],
  531. [[3, 3], [2, 2], [5, 3], [1, 2], [0, 0]]
  532. ]
  533. data = tf.convert_to_tensor(data, dtype=tf.float32)
  534. length = tl.layers.retrieve_seq_length_op3(data)
  535. print(length)
  536. data = [[1, 2, 0, 0, 0], [1, 2, 3, 0, 0], [1, 2, 6, 1, 0]]
  537. data = tf.convert_to_tensor(data, dtype=tf.float32)
  538. length = tl.layers.retrieve_seq_length_op3(data)
  539. print(length)
  540. data = [
  541. ['hello', 'world', '', '', ''], ['hello', 'world', 'tensorlayer', '', ''],
  542. ['hello', 'world', 'tensorlayer', '2.0', '']
  543. ]
  544. data = tf.convert_to_tensor(data, dtype=tf.string)
  545. length = tl.layers.retrieve_seq_length_op3(data, pad_val='')
  546. print(length)
  547. try:
  548. data = [1, 2, 0, 0, 0]
  549. data = tf.convert_to_tensor(data, dtype=tf.float32)
  550. length = tl.layers.retrieve_seq_length_op3(data)
  551. print(length)
  552. except Exception as e:
  553. print(e)
  554. try:
  555. data = np.random.random([4, 2, 6, 2])
  556. data = tf.convert_to_tensor(data, dtype=tf.float32)
  557. length = tl.layers.retrieve_seq_length_op3(data)
  558. print(length)
  559. except Exception as e:
  560. print(e)
  561. def test_target_mask_op(self):
  562. fail_flag = False
  563. data = [
  564. ['hello', 'world', '', '', ''], ['hello', 'world', 'tensorlayer', '', ''],
  565. ['hello', 'world', 'tensorlayer', '2.0', '']
  566. ]
  567. try:
  568. tl.layers.target_mask_op(data, pad_val='')
  569. fail_flag = True
  570. except AttributeError as e:
  571. print(e)
  572. if fail_flag:
  573. self.fail("Type error not raised")
  574. data = tf.convert_to_tensor(data, dtype=tf.string)
  575. mask = tl.layers.target_mask_op(data, pad_val='')
  576. print(mask)
  577. data = [[[1], [0], [0], [0], [0]], [[1], [2], [3], [0], [0]], [[1], [2], [0], [1], [0]]]
  578. data = tf.convert_to_tensor(data, dtype=tf.float32)
  579. mask = tl.layers.target_mask_op(data)
  580. print(mask)
  581. data = [
  582. [[0, 0], [2, 2], [1, 2], [1, 2], [0, 0]], [[2, 3], [2, 4], [3, 2], [1, 0], [0, 0]],
  583. [[3, 3], [0, 1], [5, 3], [1, 2], [0, 0]]
  584. ]
  585. data = tf.convert_to_tensor(data, dtype=tf.float32)
  586. mask = tl.layers.target_mask_op(data)
  587. print(mask)
  588. fail_flag = False
  589. try:
  590. data = [1, 2, 0, 0, 0]
  591. data = tf.convert_to_tensor(data, dtype=tf.float32)
  592. tl.layers.target_mask_op(data)
  593. fail_flag = True
  594. except ValueError as e:
  595. print(e)
  596. if fail_flag:
  597. self.fail("Wrong data shape not detected.")
  598. fail_flag = False
  599. try:
  600. data = np.random.random([4, 2, 6, 2])
  601. data = tf.convert_to_tensor(data, dtype=tf.float32)
  602. tl.layers.target_mask_op(data)
  603. fail_flag = True
  604. except ValueError as e:
  605. print(e)
  606. if fail_flag:
  607. self.fail("Wrong data shape not detected.")
  608. def test_dynamic_rnn(self):
  609. batch_size = 3
  610. num_steps = 5
  611. embedding_size = 6
  612. hidden_size = 4
  613. inputs = tl.layers.Input([batch_size, num_steps, embedding_size])
  614. rnn_layer = tl.layers.RNN(
  615. cell=tf.keras.layers.LSTMCell(units=hidden_size, dropout=0.1), in_channels=embedding_size,
  616. return_last_output=True, return_last_state=True
  617. )
  618. rnn_layer.is_train = False
  619. print(tl.layers.retrieve_seq_length_op3(inputs))
  620. _ = rnn_layer(inputs, sequence_length=tl.layers.retrieve_seq_length_op3(inputs))
  621. _ = rnn_layer(inputs, sequence_length=np.array([5, 5, 5]))
  622. # test exceptions
  623. except_flag = False
  624. try:
  625. _ = rnn_layer(inputs, sequence_length=1)
  626. except_flag = True
  627. except TypeError as e:
  628. print(e)
  629. try:
  630. _ = rnn_layer(inputs, sequence_length=["str", 1, 2])
  631. except_flag = True
  632. except TypeError as e:
  633. print(e)
  634. try:
  635. _ = rnn_layer(inputs, sequence_length=[10, 2, 2])
  636. except_flag = True
  637. except ValueError as e:
  638. print(e)
  639. try:
  640. _ = rnn_layer(inputs, sequence_length=[1])
  641. except_flag = True
  642. except ValueError as e:
  643. print(e)
  644. if except_flag:
  645. self.fail("Exception not detected.")
  646. # test warning
  647. for _ in range(5):
  648. _ = rnn_layer(inputs, sequence_length=[5, 5, 5], return_last_output=False, return_last_state=True)
  649. _ = rnn_layer(inputs, sequence_length=[5, 5, 5], return_last_output=True, return_last_state=False)
  650. x = rnn_layer(inputs, sequence_length=None, return_last_output=True, return_last_state=True)
  651. y = rnn_layer(inputs, sequence_length=[5, 5, 5], return_last_output=True, return_last_state=True)
  652. assert len(x) == 2
  653. assert len(y) == 2
  654. for i, j in zip(x, y):
  655. self.assertTrue(np.allclose(i, j))
  656. def test_dynamic_rnn_with_seq_len_op2(self):
  657. data = [[[1], [2], [0], [0], [0]], [[1], [2], [3], [0], [0]], [[1], [2], [6], [1], [1]]]
  658. data = tf.convert_to_tensor(data, dtype=tf.float32)
  659. class DynamicRNNExample(tl.models.Model):
  660. def __init__(self):
  661. super(DynamicRNNExample, self).__init__()
  662. self.rnnlayer = tl.layers.RNN(
  663. cell=tf.keras.layers.SimpleRNNCell(units=6, dropout=0.1), in_channels=1, return_last_output=True,
  664. return_last_state=True
  665. )
  666. def forward(self, x):
  667. z0, s0 = self.rnnlayer(x, sequence_length=None)
  668. z1, s1 = self.rnnlayer(x, sequence_length=tl.layers.retrieve_seq_length_op3(x))
  669. z2, s2 = self.rnnlayer(x, sequence_length=tl.layers.retrieve_seq_length_op3(x), initial_state=s1)
  670. print(z0)
  671. print(z1)
  672. print(z2)
  673. print("===")
  674. print(s0)
  675. print(s1)
  676. print(s2)
  677. return z2, s2
  678. model = DynamicRNNExample()
  679. model.eval()
  680. output, state = model(data)
  681. print(output.shape)
  682. print(state)
  683. def test_dynamic_rnn_with_fake_data(self):
  684. class CustomisedModel(tl.models.Model):
  685. def __init__(self):
  686. super(CustomisedModel, self).__init__()
  687. self.rnnlayer = tl.layers.LSTMRNN(
  688. units=8, dropout=0.1, in_channels=4, return_last_output=True, return_last_state=False
  689. )
  690. self.dense = tl.layers.Dense(in_channels=8, n_units=1)
  691. def forward(self, x):
  692. z = self.rnnlayer(x, sequence_length=tl.layers.retrieve_seq_length_op3(x))
  693. z = self.dense(z[:, :])
  694. return z
  695. rnn_model = CustomisedModel()
  696. print(rnn_model)
  697. optimizer = tf.optimizers.Adam(learning_rate=0.01)
  698. rnn_model.train()
  699. for epoch in range(50):
  700. with tf.GradientTape() as tape:
  701. pred_y = rnn_model(self.data_x)
  702. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  703. gradients = tape.gradient(loss, rnn_model.trainable_weights)
  704. optimizer.apply_gradients(zip(gradients, rnn_model.trainable_weights))
  705. if (epoch + 1) % 10 == 0:
  706. print("epoch %d, loss %f" % (epoch, loss))
  707. filename = "dynamic_rnn.h5"
  708. rnn_model.save_weights(filename)
  709. # Testing saving and restoring of RNN weights
  710. rnn_model2 = CustomisedModel()
  711. rnn_model2.eval()
  712. pred_y = rnn_model2(self.data_x)
  713. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  714. print("MODEL INIT loss %f" % (loss))
  715. rnn_model2.load_weights(filename)
  716. pred_y = rnn_model2(self.data_x)
  717. loss = tl.cost.mean_squared_error(pred_y, self.data_y)
  718. print("MODEL RESTORE W loss %f" % (loss))
  719. import os
  720. os.remove(filename)
  721. if __name__ == '__main__':
  722. unittest.main()

TensorLayer3.0 是一款兼容多种深度学习框架为计算后端的深度学习库。计划兼容TensorFlow, Pytorch, MindSpore, Paddle.