You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_layers_pooling.py 6.8 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. import os
  4. import unittest
  5. os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
  6. import tensorlayer as tl
  7. from tensorlayer.layers import *
  8. from tests.utils import CustomTestCase
  9. class Layer_Pooling_Test(CustomTestCase):
  10. @classmethod
  11. def setUpClass(cls):
  12. ## 1D ========================================================================
  13. x_1_input_shape = [None, 100, 1]
  14. nin_1 = Input(x_1_input_shape, name='test_in1')
  15. n1 = tl.layers.Conv1d(n_filter=32, filter_size=5, stride=2, name='test_conv1d')(nin_1)
  16. n2 = tl.layers.MaxPool1d(filter_size=3, strides=2, padding='SAME', name='test_maxpool1d')(n1)
  17. n3 = tl.layers.MeanPool1d(filter_size=3, strides=2, padding='SAME', name='test_meanpool1d')(n1)
  18. n4 = tl.layers.GlobalMaxPool1d(name='test_maxpool1d')(n1)
  19. n5 = tl.layers.GlobalMeanPool1d(name='test_meanpool1d')(n1)
  20. n16 = tl.layers.MaxPool1d(filter_size=3, strides=1, padding='VALID', dilation_rate=2, name='test_maxpool1d')(n1)
  21. n17 = tl.layers.MeanPool1d(filter_size=3, strides=1, padding='VALID', dilation_rate=2,
  22. name='test_meanpool1d')(n1)
  23. n19 = tl.layers.AdaptiveMeanPool1d(output_size=44, name='test_adaptivemeanpool1d')(n1)
  24. n20 = tl.layers.AdaptiveMaxPool1d(output_size=44, name='test_adaptivemaxpool1d')(n1)
  25. cls.n1_shape = tl.get_tensor_shape(n1)
  26. cls.n2_shape = tl.get_tensor_shape(n2)
  27. cls.n3_shape = tl.get_tensor_shape(n3)
  28. cls.n4_shape = tl.get_tensor_shape(n4)
  29. cls.n5_shape = tl.get_tensor_shape(n5)
  30. cls.n16_shape = tl.get_tensor_shape(n16)
  31. cls.n17_shape = tl.get_tensor_shape(n17)
  32. cls.n19_shape = tl.get_tensor_shape(n19)
  33. cls.n20_shape = tl.get_tensor_shape(n20)
  34. ## 2D ========================================================================
  35. x_2_input_shape = [None, 100, 100, 3]
  36. nin_2 = Input(x_2_input_shape, name='test_in2')
  37. n6 = tl.layers.Conv2d(n_filter=32, filter_size=(3, 3), strides=(2, 2), name='test_conv2d')(nin_2)
  38. n7 = tl.layers.MaxPool2d(filter_size=(3, 3), strides=(2, 2), padding='SAME', name='test_maxpool2d')(n6)
  39. n8 = tl.layers.MeanPool2d(filter_size=(3, 3), strides=(2, 2), padding='SAME', name='test_meanpool2d')(n6)
  40. n9 = tl.layers.GlobalMaxPool2d(name='test_maxpool2d')(n6)
  41. n10 = tl.layers.GlobalMeanPool2d(name='test_meanpool2d')(n6)
  42. n15 = tl.layers.PoolLayer(name='test_pool2d')(n6)
  43. # n18 = tl.layers.CornerPool2d('TopLeft', name='test_cornerpool2d')(n6)
  44. n21 = tl.layers.AdaptiveMeanPool2d(output_size=(45, 32), name='test_adaptivemeanpool2d')(n6)
  45. n22 = tl.layers.AdaptiveMaxPool2d(output_size=(45, 32), name='test_adaptivemaxpool2d')(n6)
  46. cls.n6_shape = tl.get_tensor_shape(n6)
  47. cls.n7_shape = tl.get_tensor_shape(n7)
  48. cls.n8_shape = tl.get_tensor_shape(n8)
  49. cls.n9_shape = tl.get_tensor_shape(n9)
  50. cls.n10_shape = tl.get_tensor_shape(n10)
  51. cls.n15_shape = tl.get_tensor_shape(n15)
  52. cls.n21_shape = tl.get_tensor_shape(n21)
  53. cls.n22_shape = tl.get_tensor_shape(n22)
  54. ## 3D ========================================================================
  55. x_3_input_shape = [None, 100, 100, 100, 3]
  56. nin_3 = Input(x_3_input_shape, name='test_in3')
  57. n11 = tl.layers.MeanPool3d(filter_size=(3, 3, 3), strides=(2, 2, 2), padding='SAME',
  58. name='test_meanpool3d')(nin_3)
  59. n12 = tl.layers.GlobalMaxPool3d(name='test_maxpool3d')(nin_3)
  60. n13 = tl.layers.GlobalMeanPool3d(name='test_meanpool3d')(nin_3)
  61. n14 = tl.layers.MaxPool3d(filter_size=(3, 3, 3), strides=(2, 2, 2), padding='SAME',
  62. name='test_maxpool3d')(nin_3)
  63. n23 = tl.layers.AdaptiveMeanPool3d(output_size=(45, 32, 55), name='test_adaptivemeanpool3d')(nin_3)
  64. n24 = tl.layers.AdaptiveMaxPool3d(output_size=(45, 32, 55), name='test_adaptivemaxpool3d')(nin_3)
  65. cls.n11_shape = n11.get_shape().as_list()
  66. cls.n12_shape = n12.get_shape().as_list()
  67. cls.n13_shape = n13.get_shape().as_list()
  68. cls.n14_shape = n14.get_shape().as_list()
  69. cls.n21_shape = n21.get_shape().as_list()
  70. cls.n22_shape = n22.get_shape().as_list()
  71. cls.n23_shape = n23.get_shape().as_list()
  72. cls.n24_shape = n24.get_shape().as_list()
  73. @classmethod
  74. def tearDownClass(cls):
  75. pass
  76. # tf.reset_default_graph()
  77. def test_n1_shape(self):
  78. self.assertEqual(self.n1_shape[1:3], [50, 32])
  79. def test_n2_shape(self):
  80. self.assertEqual(self.n2_shape[1:3], [25, 32])
  81. def test_n3_shape(self):
  82. self.assertEqual(self.n3_shape[1:3], [25, 32])
  83. def test_n4_shape(self):
  84. self.assertEqual(self.n4_shape[-1], 32)
  85. def test_n5_shape(self):
  86. self.assertEqual(self.n5_shape[-1], 32)
  87. def test_n6_shape(self):
  88. self.assertEqual(self.n6_shape[1:4], [50, 50, 32])
  89. def test_n7_shape(self):
  90. self.assertEqual(self.n7_shape[1:4], [25, 25, 32])
  91. def test_n8_shape(self):
  92. self.assertEqual(self.n8_shape[1:4], [25, 25, 32])
  93. def test_n9_shape(self):
  94. self.assertEqual(self.n9_shape[-1], 32)
  95. def test_n10_shape(self):
  96. self.assertEqual(self.n10_shape[-1], 32)
  97. def test_n11_shape(self):
  98. self.assertEqual(self.n11_shape[1:5], [50, 50, 50, 3])
  99. def test_n12_shape(self):
  100. self.assertEqual(self.n12_shape[-1], 3)
  101. def test_n13_shape(self):
  102. self.assertEqual(self.n13_shape[-1], 3)
  103. def test_n14_shape(self):
  104. self.assertEqual(self.n14_shape[1:5], [50, 50, 50, 3])
  105. def test_n15_shape(self):
  106. self.assertEqual(self.n15_shape[1:4], [25, 25, 32])
  107. def test_n16_shape(self):
  108. self.assertEqual(self.n16_shape[1:4], [46, 32])
  109. def test_n17_shape(self):
  110. self.assertEqual(self.n17_shape[1:4], [46, 32])
  111. def test_n19_shape(self):
  112. self.assertEqual(self.n19_shape[1:3], [44, 32])
  113. def test_n20_shape(self):
  114. self.assertEqual(self.n20_shape[1:3], [44, 32])
  115. def test_n21_shape(self):
  116. self.assertEqual(self.n21_shape[1:4], [45, 32, 32])
  117. def test_n22_shape(self):
  118. self.assertEqual(self.n22_shape[1:4], [45, 32, 32])
  119. def test_n23_shape(self):
  120. self.assertEqual(self.n23_shape[1:5], [45, 32, 55, 3])
  121. def test_n24_shape(self):
  122. self.assertEqual(self.n24_shape[1:5], [45, 32, 55, 3])
  123. # def test_n18_shape(self):
  124. # self.assertEqual(self.n18_shape[1:], [50, 50, 32])
  125. if __name__ == '__main__':
  126. tl.logging.set_verbosity(tl.logging.DEBUG)
  127. unittest.main()

TensorLayer3.0 是一款兼容多种深度学习框架为计算后端的深度学习库。计划兼容TensorFlow, Pytorch, MindSpore, Paddle.