You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tensorflow_optimizers.py 1.6 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. #! /usr/bin/python
  2. # -*- coding: utf-8 -*-
  3. from __future__ import absolute_import, division, print_function
  4. import tensorflow as tf
  5. __all__ = ['Adadelta', 'Adagrad', 'Adam', 'Adamax', 'Ftrl', 'Nadam', 'RMSprop', 'SGD', 'Momentum', 'Lamb', 'LARS']
  6. # Add module aliases
  7. # learning_rate=0.001, rho=0.95, epsilon=1e-07, name='Adadelta'
  8. Adadelta = tf.optimizers.Adadelta
  9. # learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,name='Adagrad'
  10. Adagrad = tf.optimizers.Adagrad
  11. # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False,name='Adam'
  12. Adam = tf.optimizers.Adam
  13. # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name='Adamax'
  14. Adamax = tf.optimizers.Adamax
  15. # learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1,
  16. # l1_regularization_strength=0.0, l2_regularization_strength=0.0, name='Ftrl',l2_shrinkage_regularization_strength=0.0
  17. Ftrl = tf.optimizers.Ftrl
  18. # learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name='Nadam',
  19. Nadam = tf.optimizers.Nadam
  20. # learning_rate=0.001, rho=0.9, momentum=0.0, epsilon=1e-07, centered=False,name='RMSprop'
  21. RMSprop = tf.optimizers.RMSprop
  22. # learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD'
  23. SGD = tf.optimizers.SGD
  24. # learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False
  25. Momentum = tf.compat.v1.train.MomentumOptimizer
  26. def Lamb(**kwargs):
  27. raise Exception('Lamb optimizer function not implemented')
  28. def LARS(**kwargs):
  29. raise Exception('LARS optimizer function not implemented')

TensorLayer3.0 是一款兼容多种深度学习框架为计算后端的深度学习库。计划兼容TensorFlow, Pytorch, MindSpore, Paddle.