You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tutorial_SequentialLayer.py 1.6 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. #! /usr/bin/python
  2. # -*- coding: utf-8 -*-
  3. import os
  4. os.environ['TL_BACKEND'] = 'tensorflow'
  5. from tensorlayer.layers import SequentialLayer
  6. from tensorlayer.layers import Dense
  7. import tensorlayer as tl
  8. import numpy as np
  9. layer_list = []
  10. layer_list.append(Dense(n_units=800, act=tl.ReLU, in_channels=784, name='Dense1'))
  11. layer_list.append(Dense(n_units=800, act=tl.ReLU, in_channels=800, name='Dense2'))
  12. layer_list.append(Dense(n_units=10, act=tl.ReLU, in_channels=800, name='Dense3'))
  13. MLP = SequentialLayer(layer_list)
  14. X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784))
  15. def generator_train():
  16. inputs = X_train
  17. targets = y_train
  18. if len(inputs) != len(targets):
  19. raise AssertionError("The length of inputs and targets should be equal")
  20. for _input, _target in zip(inputs, targets):
  21. yield (_input, np.array(_target))
  22. n_epoch = 50
  23. batch_size = 128
  24. print_freq = 2
  25. shuffle_buffer_size = 128
  26. # train_weights = MLP.trainable_weights
  27. # print(train_weights)
  28. optimizer = tl.optimizers.Momentum(0.05, 0.9)
  29. train_ds = tl.dataflow.FromGenerator(
  30. generator_train, output_types=(tl.float32, tl.int32), column_names=['data', 'label']
  31. )
  32. train_ds = tl.dataflow.Shuffle(train_ds, shuffle_buffer_size)
  33. train_ds = tl.dataflow.Batch(train_ds, batch_size)
  34. model = tl.models.Model(network=MLP, loss_fn=tl.cost.softmax_cross_entropy_with_logits, optimizer=optimizer)
  35. model.train(n_epoch=n_epoch, train_dataset=train_ds, print_freq=print_freq, print_train_batch=False)
  36. model.save_weights('./model.npz', format='npz_dict')
  37. model.load_weights('./model.npz', format='npz_dict')

TensorLayer3.0 是一款兼容多种深度学习框架为计算后端的深度学习库。计划兼容TensorFlow, Pytorch, MindSpore, Paddle.