#! /usr/bin/python # -*- coding: utf-8 -*- import os os.environ['TL_BACKEND'] = 'tensorflow' from tensorlayer.layers import SequentialLayer from tensorlayer.layers import Dense import tensorlayer as tl import numpy as np layer_list = [] layer_list.append(Dense(n_units=800, act=tl.ReLU, in_channels=784, name='Dense1')) layer_list.append(Dense(n_units=800, act=tl.ReLU, in_channels=800, name='Dense2')) layer_list.append(Dense(n_units=10, act=tl.ReLU, in_channels=800, name='Dense3')) MLP = SequentialLayer(layer_list) X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784)) def generator_train(): inputs = X_train targets = y_train if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") for _input, _target in zip(inputs, targets): yield (_input, np.array(_target)) n_epoch = 50 batch_size = 128 print_freq = 2 shuffle_buffer_size = 128 # train_weights = MLP.trainable_weights # print(train_weights) optimizer = tl.optimizers.Momentum(0.05, 0.9) train_ds = tl.dataflow.FromGenerator( generator_train, output_types=(tl.float32, tl.int32), column_names=['data', 'label'] ) train_ds = tl.dataflow.Shuffle(train_ds, shuffle_buffer_size) train_ds = tl.dataflow.Batch(train_ds, batch_size) model = tl.models.Model(network=MLP, loss_fn=tl.cost.softmax_cross_entropy_with_logits, optimizer=optimizer) model.train(n_epoch=n_epoch, train_dataset=train_ds, print_freq=print_freq, print_train_batch=False) model.save_weights('./model.npz', format='npz_dict') model.load_weights('./model.npz', format='npz_dict')