You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_model_core.py 13 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. import os
  4. import unittest
  5. os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
  6. import numpy as np
  7. import tensorflow as tf
  8. import tensorlayer as tl
  9. from tensorlayer.layers import *
  10. from tensorlayer.models import *
  11. from tests.utils import CustomTestCase
  12. def basic_static_model():
  13. ni = Input((None, 24, 24, 3))
  14. nn = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, name="conv1")(ni)
  15. nn = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')(nn)
  16. nn = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, name="conv2")(nn)
  17. nn = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')(nn)
  18. nn = Flatten(name='flatten')(nn)
  19. nn = Dense(100, act=None, name="dense1")(nn)
  20. nn = Dense(10, act=None, name="dense2")(nn)
  21. M = Model(inputs=ni, outputs=nn)
  22. return M
  23. class basic_dynamic_model(Model):
  24. def __init__(self):
  25. super(basic_dynamic_model, self).__init__()
  26. self.conv1 = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, in_channels=3, name="conv1")
  27. self.pool1 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')
  28. self.conv2 = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, in_channels=16, name="conv2")
  29. self.pool2 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')
  30. self.flatten = Flatten(name='flatten')
  31. self.dense1 = Dense(100, act=None, in_channels=576, name="dense1")
  32. self.dense2 = Dense(10, act=None, in_channels=100, name="dense2")
  33. def forward(self, x):
  34. x = self.conv1(x)
  35. x = self.pool1(x)
  36. x = self.conv2(x)
  37. x = self.pool2(x)
  38. x = self.flatten(x)
  39. x = self.dense1(x)
  40. x = self.dense2(x)
  41. return x
  42. class Model_Core_Test(CustomTestCase):
  43. @classmethod
  44. def setUpClass(cls):
  45. pass
  46. @classmethod
  47. def tearDownClass(cls):
  48. pass
  49. def test_dynamic_basic(self):
  50. print('-' * 20, 'test_dynamic_basic', '-' * 20)
  51. model_basic = basic_dynamic_model()
  52. # test empty model before calling
  53. self.assertEqual(model_basic.is_train, None)
  54. self.assertEqual(model_basic._all_weights, None)
  55. self.assertEqual(model_basic._inputs, None)
  56. self.assertEqual(model_basic._outputs, None)
  57. self.assertEqual(model_basic._model_layer, None)
  58. self.assertEqual(model_basic._all_layers, None)
  59. self.assertEqual(model_basic._nodes_fixed, False)
  60. # test layer and weights access
  61. all_layers = model_basic.all_layers
  62. self.assertEqual(len(model_basic.all_layers), 7)
  63. self.assertEqual(model_basic._all_weights, None)
  64. self.assertIsNotNone(model_basic.all_weights)
  65. print([w.name for w in model_basic.all_weights])
  66. # test model mode
  67. model_basic.train()
  68. self.assertEqual(model_basic.is_train, True)
  69. model_basic.eval()
  70. self.assertEqual(model_basic.is_train, False)
  71. model_basic.test()
  72. self.assertEqual(model_basic.is_train, False)
  73. model_basic.infer()
  74. self.assertEqual(model_basic.is_train, False)
  75. # test as_layer
  76. try:
  77. model_basic.as_layer()
  78. except Exception as e:
  79. print(e)
  80. self.assertIsNone(model_basic._model_layer)
  81. # test print
  82. try:
  83. print(model_basic)
  84. except Exception as e:
  85. print(e)
  86. # test forwarding
  87. inputs = np.random.normal(size=[2, 24, 24, 3]).astype(np.float32)
  88. outputs1 = model_basic(inputs)
  89. self.assertEqual(model_basic._nodes_fixed, True)
  90. self.assertEqual(model_basic.is_train, False)
  91. try:
  92. outputs2 = model_basic(inputs, is_train=True)
  93. except Exception as e:
  94. print(e)
  95. outputs2 = model_basic(inputs, is_train=False)
  96. self.assertEqual(model_basic.is_train, False)
  97. self.assertLess(np.max(np.abs(outputs1.numpy() - outputs2.numpy())), 1e-7)
  98. # test layer node
  99. self.assertEqual(len(model_basic.all_layers[-1]._nodes), 0)
  100. self.assertEqual(model_basic.all_layers[-2]._nodes_fixed, True)
  101. # test release_memory
  102. try:
  103. model_basic.release_memory()
  104. except Exception as e:
  105. print(e)
  106. def test_static_basic(self):
  107. print('-' * 20, 'test_static_basic', '-' * 20)
  108. model_basic = basic_static_model()
  109. # test empty model before calling
  110. self.assertEqual(model_basic.is_train, None)
  111. self.assertEqual(model_basic._all_weights, None)
  112. self.assertIsNotNone(model_basic._inputs)
  113. self.assertIsNotNone(model_basic._outputs)
  114. self.assertEqual(model_basic._model_layer, None)
  115. self.assertIsNotNone(model_basic._all_layers)
  116. self.assertIsNotNone(model_basic._nodes_fixed)
  117. # test layer and weights access
  118. all_layers = model_basic.all_layers
  119. self.assertEqual(len(model_basic.all_layers), 8)
  120. self.assertEqual(model_basic._all_weights, None)
  121. self.assertIsNotNone(model_basic.all_weights)
  122. print([w.name for w in model_basic.all_weights])
  123. # test model mode
  124. model_basic.train()
  125. self.assertEqual(model_basic.is_train, True)
  126. model_basic.eval()
  127. self.assertEqual(model_basic.is_train, False)
  128. model_basic.test()
  129. self.assertEqual(model_basic.is_train, False)
  130. model_basic.infer()
  131. self.assertEqual(model_basic.is_train, False)
  132. # test as_layer
  133. self.assertIsInstance(model_basic.as_layer(), tl.layers.Layer)
  134. self.assertIsNotNone(model_basic._model_layer)
  135. # test print
  136. try:
  137. print(model_basic)
  138. except Exception as e:
  139. print(e)
  140. # test forwarding
  141. inputs = np.random.normal(size=[2, 24, 24, 3]).astype(np.float32)
  142. outputs1 = model_basic(inputs)
  143. self.assertEqual(model_basic._nodes_fixed, True)
  144. self.assertEqual(model_basic.is_train, False)
  145. try:
  146. outputs2 = model_basic(inputs, is_train=True)
  147. except Exception as e:
  148. print(e)
  149. outputs2 = model_basic(inputs, is_train=False)
  150. self.assertEqual(model_basic.is_train, False)
  151. self.assertLess(np.max(np.abs(outputs1.numpy() - outputs2.numpy())), 1e-7)
  152. # test layer node
  153. self.assertEqual(len(model_basic.all_layers[-1]._nodes), 1)
  154. self.assertEqual(model_basic.all_layers[-2]._nodes_fixed, True)
  155. # test release_memory
  156. try:
  157. model_basic.release_memory()
  158. except Exception as e:
  159. print(e)
  160. def test_deprecated_function(self):
  161. print('-' * 20, 'test_deprecated_function', '-' * 20)
  162. model = basic_dynamic_model()
  163. try:
  164. model.print_all_layers()
  165. except Exception as e:
  166. print(e)
  167. try:
  168. model.count_params()
  169. except Exception as e:
  170. print(e)
  171. try:
  172. model.print_params()
  173. except Exception as e:
  174. print(e)
  175. try:
  176. model.all_params()
  177. except Exception as e:
  178. print(e)
  179. try:
  180. model.all_drop()
  181. except Exception as e:
  182. print(e)
  183. def test_exceptions(self):
  184. print('-' * 20, 'test exceptions', '-' * 20)
  185. np_arr = np.random.normal(size=[4, 784]).astype(np.float32)
  186. tf_tensor = tf.random.normal(shape=[4, 784])
  187. ni = Input(shape=[4, 784])
  188. try:
  189. model = Model(inputs=[], outputs=[])
  190. except Exception as e:
  191. self.assertIsInstance(e, ValueError)
  192. print(e)
  193. try:
  194. model = Model(inputs=np_arr, outputs=np_arr + 1)
  195. except Exception as e:
  196. self.assertIsInstance(e, TypeError)
  197. print(e)
  198. try:
  199. model = Model(inputs=[np_arr], outputs=[np_arr + 1])
  200. except Exception as e:
  201. self.assertIsInstance(e, TypeError)
  202. print(e)
  203. try:
  204. model = Model(inputs=[tf_tensor], outputs=[tf_tensor + 1])
  205. except Exception as e:
  206. self.assertIsInstance(e, TypeError)
  207. print(e)
  208. try:
  209. model = Model(inputs=tf_tensor, outputs=[tf_tensor + 1])
  210. except Exception as e:
  211. self.assertIsInstance(e, TypeError)
  212. print(e)
  213. try:
  214. model = Model(inputs=ni, outputs=[tf_tensor + 1])
  215. except Exception as e:
  216. self.assertIsInstance(e, TypeError)
  217. print(e)
  218. try:
  219. class ill_model(Model):
  220. def __init__(self):
  221. super(ill_model, self).__init__()
  222. self.dense2 = Dense(10, act=None)
  223. def forward(self, x):
  224. x = self.dense2(x)
  225. return x
  226. model = ill_model()
  227. weights = model.all_weights
  228. except Exception as e:
  229. self.assertIsInstance(e, AttributeError)
  230. print(e)
  231. try:
  232. ni = Input([4, 784])
  233. nn = Dense(10)(ni)
  234. model = Model(inputs=ni, outputs=nn)
  235. outputs = model(np_arr)
  236. except Exception as e:
  237. self.assertIsInstance(e, ValueError)
  238. print(e)
  239. try:
  240. ni = Input([4, 784])
  241. model = Model(inputs=ni, outputs=ni)
  242. model.save_weights('./empty_model.h5')
  243. except Exception as e:
  244. print(e)
  245. try:
  246. ni = Input([4, 784])
  247. nn = Dense(10)(ni)
  248. model = Model(inputs=ni, outputs=nn)
  249. model._outputs = None
  250. outputs = model(np_arr, is_train=True)
  251. except Exception as e:
  252. self.assertIsInstance(e, ValueError)
  253. print(e)
  254. def test_list_inputs_outputs(self):
  255. print('-' * 20, 'test_list_inputs_outputs', '-' * 20)
  256. ni_1 = Input(shape=[4, 16])
  257. ni_2 = Input(shape=[4, 32])
  258. a_1 = Dense(80)(ni_1)
  259. b_1 = Dense(160)(ni_2)
  260. concat = Concat()([a_1, b_1])
  261. a_2 = Dense(10)(concat)
  262. b_2 = Dense(20)(concat)
  263. model = Model(inputs=[ni_1, ni_2], outputs=[a_2, b_2])
  264. model.train()
  265. np_arr1 = np.random.normal(size=[4, 16]).astype(np.float32)
  266. np_arr2 = np.random.normal(size=[4, 32]).astype(np.float32)
  267. try:
  268. outputs = model(np_arr1)
  269. except Exception as e:
  270. self.assertIsInstance(e, ValueError)
  271. print(e)
  272. try:
  273. outputs = model([np_arr1])
  274. except Exception as e:
  275. self.assertIsInstance(e, ValueError)
  276. print(e)
  277. out_a, out_b = model([np_arr1, np_arr2])
  278. self.assertEqual(out_a.shape, [4, 10])
  279. self.assertEqual(out_b.shape, [4, 20])
  280. def test_special_case(self):
  281. print('-' * 20, 'test_special_case', '-' * 20)
  282. class my_model(Model):
  283. def __init__(self):
  284. super(my_model, self).__init__()
  285. self.dense = Dense(64, in_channels=3)
  286. self.vgg = tl.models.vgg16()
  287. def forward(self, x):
  288. return x
  289. model = my_model()
  290. weights = model.all_weights
  291. self.assertGreater(len(weights), 2)
  292. print(len(weights))
  293. def test_get_layer(self):
  294. print('-' * 20, 'test_get_layer', '-' * 20)
  295. model_basic = basic_dynamic_model()
  296. self.assertIsInstance(model_basic.get_layer('conv2'), tl.layers.Conv2d)
  297. try:
  298. model_basic.get_layer('abc')
  299. except Exception as e:
  300. print(e)
  301. try:
  302. model_basic.get_layer(index=99)
  303. except Exception as e:
  304. print(e)
  305. model_basic = basic_static_model()
  306. self.assertIsInstance(model_basic.get_layer('conv2'), tl.layers.Conv2d)
  307. self.assertIsInstance(model_basic.get_layer(index=2), tl.layers.MaxPool2d)
  308. print([w.name for w in model_basic.get_layer(index=-1).all_weights])
  309. try:
  310. model_basic.get_layer('abc')
  311. except Exception as e:
  312. print(e)
  313. try:
  314. model_basic.get_layer(index=99)
  315. except Exception as e:
  316. print(e)
  317. def test_model_weights_copy(self):
  318. print('-' * 20, 'test_model_weights_copy', '-' * 20)
  319. model_basic = basic_static_model()
  320. model_weights = model_basic.trainable_weights
  321. ori_len = len(model_weights)
  322. model_weights.append(np.arange(5))
  323. new_len = len(model_weights)
  324. self.assertEqual(new_len - 1, ori_len)
  325. def test_inchannels_exception(self):
  326. print('-' * 20, 'test_inchannels_exception', '-' * 20)
  327. class my_model(Model):
  328. def __init__(self):
  329. super(my_model, self).__init__()
  330. self.dense = Dense(64)
  331. self.vgg = tl.models.vgg16()
  332. def forward(self, x):
  333. return x
  334. try:
  335. M = my_model()
  336. except Exception as e:
  337. self.assertIsInstance(e, AttributeError)
  338. print(e)
  339. if __name__ == '__main__':
  340. unittest.main()

TensorLayer3.0 是一款兼容多种深度学习框架为计算后端的深度学习库。计划兼容TensorFlow, Pytorch, MindSpore, Paddle.