|
- #include "test_utils.h"
- #include "performance_utils.h"
- #include "yaml_reporter.h"
- #include <iostream>
- #include <vector>
- #include <iomanip>
-
-
- // ============================================================================
- // 实现标记宏 - 参赛者修改实现时请将此宏设为0
- // ============================================================================
- #ifndef USE_DEFAULT_REF_IMPL
- #define USE_DEFAULT_REF_IMPL 1 // 1=默认实现, 0=参赛者自定义实现
- #endif
-
- #if USE_DEFAULT_REF_IMPL
- #include <thrust/reduce.h>
- #include <thrust/device_vector.h>
- #include <thrust/execution_policy.h>
- #include <thrust/functional.h>
- #endif
-
- // 误差容忍度
- constexpr double REDUCE_ERROR_TOLERANCE = 0.005; // 0.5%
-
- // ============================================================================
- // ReduceSum算法实现接口
- // 参赛者需要替换Thrust实现为自己的高性能kernel
- // ============================================================================
-
- template <typename InputT = float, typename OutputT = float>
- class ReduceSumAlgorithm {
- public:
- // 主要接口函数 - 参赛者需要实现这个函数
- void reduce(const InputT* d_in, OutputT* d_out, int num_items, OutputT init_value) {
-
- #if !USE_DEFAULT_REF_IMPL
- // ========================================
- // 参赛者自定义实现区域
- // ========================================
-
- // TODO: 参赛者在此实现自己的高性能归约算法
-
- // 示例:参赛者可以调用1个或多个自定义kernel
- // blockReduceKernel<<<grid, block>>>(d_in, temp_results, num_items, init_value);
- // finalReduceKernel<<<1, block>>>(temp_results, d_out, grid.x);
- #else
- // ========================================
- // 默认基准实现
- // ========================================
- auto input_ptr = thrust::device_pointer_cast(d_in);
- auto output_ptr = thrust::device_pointer_cast(d_out);
-
- // 直接使用thrust::reduce进行归约
- *output_ptr = thrust::reduce(
- thrust::device,
- input_ptr,
- input_ptr + num_items,
- static_cast<OutputT>(init_value)
- );
- #endif
- }
-
- // 获取当前实现状态
- static const char* getImplementationStatus() {
- #if USE_DEFAULT_REF_IMPL
- return "DEFAULT_REF_IMPL";
- #else
- return "CUSTOM_IMPL";
- #endif
- }
-
- private:
- // 参赛者可以在这里添加辅助函数和成员变量
- // 例如:中间结果缓冲区、多阶段归约等
- };
-
- // ============================================================================
- // 测试和性能评估
- // ============================================================================
-
- bool testCorrectness() {
- std::cout << "ReduceSum 正确性测试..." << std::endl;
- TestDataGenerator generator;
- ReduceSumAlgorithm<float, float> algorithm;
-
- bool allPassed = true;
-
- // 测试不同数据规模
- for (int i = 0; i < NUM_TEST_SIZES && i < 2; i++) { // 限制测试规模
- int size = std::min(TEST_SIZES[i], 10000);
- std::cout << " 测试规模: " << size << std::endl;
-
- // 测试普通数据
- {
- auto data = generator.generateRandomFloats(size, -10.0f, 10.0f);
- float init_value = 1.0f;
-
- // CPU参考计算
- double cpu_result = cpuReduceSum(data, static_cast<double>(init_value));
-
- // GPU计算
- float *d_in;
- float *d_out;
- MACA_CHECK(mcMalloc(&d_in, size * sizeof(float)));
- MACA_CHECK(mcMalloc(&d_out, sizeof(float)));
-
- MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice));
-
- algorithm.reduce(d_in, d_out, size, init_value);
-
- float gpu_result;
- MACA_CHECK(mcMemcpy(&gpu_result, d_out, sizeof(float), mcMemcpyDeviceToHost));
-
- // 验证误差
- double relative_error = std::abs(gpu_result - cpu_result) / std::abs(cpu_result);
- if (relative_error > REDUCE_ERROR_TOLERANCE) {
- std::cout << " 失败: 误差过大 " << relative_error << std::endl;
- allPassed = false;
- } else {
- std::cout << " 通过 (误差: " << relative_error << ")" << std::endl;
- }
-
- mcFree(d_in);
- mcFree(d_out);
- }
-
- // 测试特殊值 (NaN, Inf)
- if (size > 100) {
- std::cout << " 测试特殊值..." << std::endl;
- auto data = generator.generateSpecialFloats(size);
- float init_value = 0.0f;
-
- double cpu_result = cpuReduceSum(data, static_cast<double>(init_value));
-
- float *d_in;
- float *d_out;
- MACA_CHECK(mcMalloc(&d_in, size * sizeof(float)));
- MACA_CHECK(mcMalloc(&d_out, sizeof(float)));
-
- MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice));
-
- algorithm.reduce(d_in, d_out, size, init_value);
-
- float gpu_result;
- MACA_CHECK(mcMemcpy(&gpu_result, d_out, sizeof(float), mcMemcpyDeviceToHost));
-
- // 对于包含特殊值的情况,检查是否正确处理
- if (std::isfinite(cpu_result) && std::isfinite(gpu_result)) {
- double relative_error = std::abs(gpu_result - cpu_result) / std::abs(cpu_result);
- if (relative_error > REDUCE_ERROR_TOLERANCE) {
- std::cout << " 失败: 特殊值处理错误" << std::endl;
- allPassed = false;
- } else {
- std::cout << " 通过 (特殊值处理)" << std::endl;
- }
- } else {
- std::cout << " 通过 (特殊值结果)" << std::endl;
- }
-
- mcFree(d_in);
- mcFree(d_out);
- }
- }
-
- return allPassed;
- }
-
- void benchmarkPerformance() {
- PerformanceDisplay::printReduceSumHeader();
-
- TestDataGenerator generator;
- PerformanceMeter meter;
- ReduceSumAlgorithm<float, float> algorithm;
-
- const int WARMUP_ITERATIONS = 5;
- const int BENCHMARK_ITERATIONS = 10;
-
- // 用于YAML报告的数据收集
- std::vector<std::map<std::string, std::string>> perf_data;
-
- for (int i = 0; i < NUM_TEST_SIZES; i++) {
- int size = TEST_SIZES[i];
-
- // 生成测试数据
- auto data = generator.generateRandomFloats(size);
- float init_value = 0.0f;
-
- // 分配GPU内存
- float *d_in;
- float *d_out;
- MACA_CHECK(mcMalloc(&d_in, size * sizeof(float)));
- MACA_CHECK(mcMalloc(&d_out, sizeof(float)));
-
- MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice));
-
- // Warmup阶段
- for (int iter = 0; iter < WARMUP_ITERATIONS; iter++) {
- algorithm.reduce(d_in, d_out, size, init_value);
- }
-
- // 正式测试阶段
- float total_time = 0;
- for (int iter = 0; iter < BENCHMARK_ITERATIONS; iter++) {
- meter.startTiming();
- algorithm.reduce(d_in, d_out, size, init_value);
- total_time += meter.stopTiming();
- }
-
- float avg_time = total_time / BENCHMARK_ITERATIONS;
-
- // 计算性能指标
- auto metrics = PerformanceCalculator::calculateReduceSum(size, avg_time);
-
- // 显示性能数据
- PerformanceDisplay::printReduceSumData(size, avg_time, metrics);
-
- // 收集YAML报告数据
- auto entry = YAMLPerformanceReporter::createEntry();
- entry["data_size"] = std::to_string(size);
- entry["time_ms"] = std::to_string(avg_time);
- entry["throughput_gps"] = std::to_string(metrics.throughput_gps);
- entry["data_type"] = "float";
- perf_data.push_back(entry);
-
- mcFree(d_in);
- mcFree(d_out);
- }
-
- // 生成YAML性能报告
- YAMLPerformanceReporter::generateReduceSumYAML(perf_data, "reduce_sum_performance.yaml");
- PerformanceDisplay::printSavedMessage("reduce_sum_performance.yaml");
- }
-
- // ============================================================================
- // 主函数
- // ============================================================================
- int main(int argc, char* argv[]) {
- std::cout << "=== ReduceSum 算法测试 ===" << std::endl;
-
- // 检查参数
- std::string mode = "all";
- if (argc > 1) {
- mode = argv[1];
- }
-
- bool correctness_passed = true;
- bool performance_completed = true;
-
- try {
- if (mode == "correctness" || mode == "all") {
- correctness_passed = testCorrectness();
- }
-
- if (mode == "performance" || mode == "all") {
- if (correctness_passed || mode == "performance") {
- benchmarkPerformance();
- } else {
- std::cout << "跳过性能测试,因为正确性测试未通过" << std::endl;
- performance_completed = false;
- }
- }
-
- std::cout << "\n=== 测试完成 ===" << std::endl;
- std::cout << "实现状态: " << ReduceSumAlgorithm<float, float>::getImplementationStatus() << std::endl;
- if (mode == "all") {
- std::cout << "正确性: " << (correctness_passed ? "通过" : "失败") << std::endl;
- std::cout << "性能测试: " << (performance_completed ? "完成" : "跳过") << std::endl;
- }
-
- return correctness_passed ? 0 : 1;
-
- } catch (const std::exception& e) {
- std::cerr << "测试出错: " << e.what() << std::endl;
- return 1;
- }
- }
|