#include "test_utils.h" #include "performance_utils.h" #include "yaml_reporter.h" #include #include #include // ============================================================================ // 实现标记宏 - 参赛者修改实现时请将此宏设为0 // ============================================================================ #ifndef USE_DEFAULT_REF_IMPL #define USE_DEFAULT_REF_IMPL 1 // 1=默认实现, 0=参赛者自定义实现 #endif #if USE_DEFAULT_REF_IMPL #include #include #include #include #endif // 误差容忍度 constexpr double REDUCE_ERROR_TOLERANCE = 0.005; // 0.5% // ============================================================================ // ReduceSum算法实现接口 // 参赛者需要替换Thrust实现为自己的高性能kernel // ============================================================================ template class ReduceSumAlgorithm { public: // 主要接口函数 - 参赛者需要实现这个函数 void reduce(const InputT* d_in, OutputT* d_out, int num_items, OutputT init_value) { #if !USE_DEFAULT_REF_IMPL // ======================================== // 参赛者自定义实现区域 // ======================================== // TODO: 参赛者在此实现自己的高性能归约算法 // 示例:参赛者可以调用1个或多个自定义kernel // blockReduceKernel<<>>(d_in, temp_results, num_items, init_value); // finalReduceKernel<<<1, block>>>(temp_results, d_out, grid.x); #else // ======================================== // 默认基准实现 // ======================================== auto input_ptr = thrust::device_pointer_cast(d_in); auto output_ptr = thrust::device_pointer_cast(d_out); // 直接使用thrust::reduce进行归约 *output_ptr = thrust::reduce( thrust::device, input_ptr, input_ptr + num_items, static_cast(init_value) ); #endif } // 获取当前实现状态 static const char* getImplementationStatus() { #if USE_DEFAULT_REF_IMPL return "DEFAULT_REF_IMPL"; #else return "CUSTOM_IMPL"; #endif } private: // 参赛者可以在这里添加辅助函数和成员变量 // 例如:中间结果缓冲区、多阶段归约等 }; // ============================================================================ // 测试和性能评估 // ============================================================================ bool testCorrectness() { std::cout << "ReduceSum 正确性测试..." << std::endl; TestDataGenerator generator; ReduceSumAlgorithm algorithm; bool allPassed = true; // 测试不同数据规模 for (int i = 0; i < NUM_TEST_SIZES && i < 2; i++) { // 限制测试规模 int size = std::min(TEST_SIZES[i], 10000); std::cout << " 测试规模: " << size << std::endl; // 测试普通数据 { auto data = generator.generateRandomFloats(size, -10.0f, 10.0f); float init_value = 1.0f; // CPU参考计算 double cpu_result = cpuReduceSum(data, static_cast(init_value)); // GPU计算 float *d_in; float *d_out; MACA_CHECK(mcMalloc(&d_in, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_out, sizeof(float))); MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice)); algorithm.reduce(d_in, d_out, size, init_value); float gpu_result; MACA_CHECK(mcMemcpy(&gpu_result, d_out, sizeof(float), mcMemcpyDeviceToHost)); // 验证误差 double relative_error = std::abs(gpu_result - cpu_result) / std::abs(cpu_result); if (relative_error > REDUCE_ERROR_TOLERANCE) { std::cout << " 失败: 误差过大 " << relative_error << std::endl; allPassed = false; } else { std::cout << " 通过 (误差: " << relative_error << ")" << std::endl; } mcFree(d_in); mcFree(d_out); } // 测试特殊值 (NaN, Inf) if (size > 100) { std::cout << " 测试特殊值..." << std::endl; auto data = generator.generateSpecialFloats(size); float init_value = 0.0f; double cpu_result = cpuReduceSum(data, static_cast(init_value)); float *d_in; float *d_out; MACA_CHECK(mcMalloc(&d_in, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_out, sizeof(float))); MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice)); algorithm.reduce(d_in, d_out, size, init_value); float gpu_result; MACA_CHECK(mcMemcpy(&gpu_result, d_out, sizeof(float), mcMemcpyDeviceToHost)); // 对于包含特殊值的情况,检查是否正确处理 if (std::isfinite(cpu_result) && std::isfinite(gpu_result)) { double relative_error = std::abs(gpu_result - cpu_result) / std::abs(cpu_result); if (relative_error > REDUCE_ERROR_TOLERANCE) { std::cout << " 失败: 特殊值处理错误" << std::endl; allPassed = false; } else { std::cout << " 通过 (特殊值处理)" << std::endl; } } else { std::cout << " 通过 (特殊值结果)" << std::endl; } mcFree(d_in); mcFree(d_out); } } return allPassed; } void benchmarkPerformance() { PerformanceDisplay::printReduceSumHeader(); TestDataGenerator generator; PerformanceMeter meter; ReduceSumAlgorithm algorithm; const int WARMUP_ITERATIONS = 5; const int BENCHMARK_ITERATIONS = 10; // 用于YAML报告的数据收集 std::vector> perf_data; for (int i = 0; i < NUM_TEST_SIZES; i++) { int size = TEST_SIZES[i]; // 生成测试数据 auto data = generator.generateRandomFloats(size); float init_value = 0.0f; // 分配GPU内存 float *d_in; float *d_out; MACA_CHECK(mcMalloc(&d_in, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_out, sizeof(float))); MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice)); // Warmup阶段 for (int iter = 0; iter < WARMUP_ITERATIONS; iter++) { algorithm.reduce(d_in, d_out, size, init_value); } // 正式测试阶段 float total_time = 0; for (int iter = 0; iter < BENCHMARK_ITERATIONS; iter++) { meter.startTiming(); algorithm.reduce(d_in, d_out, size, init_value); total_time += meter.stopTiming(); } float avg_time = total_time / BENCHMARK_ITERATIONS; // 计算性能指标 auto metrics = PerformanceCalculator::calculateReduceSum(size, avg_time); // 显示性能数据 PerformanceDisplay::printReduceSumData(size, avg_time, metrics); // 收集YAML报告数据 auto entry = YAMLPerformanceReporter::createEntry(); entry["data_size"] = std::to_string(size); entry["time_ms"] = std::to_string(avg_time); entry["throughput_gps"] = std::to_string(metrics.throughput_gps); entry["data_type"] = "float"; perf_data.push_back(entry); mcFree(d_in); mcFree(d_out); } // 生成YAML性能报告 YAMLPerformanceReporter::generateReduceSumYAML(perf_data, "reduce_sum_performance.yaml"); PerformanceDisplay::printSavedMessage("reduce_sum_performance.yaml"); } // ============================================================================ // 主函数 // ============================================================================ int main(int argc, char* argv[]) { std::cout << "=== ReduceSum 算法测试 ===" << std::endl; // 检查参数 std::string mode = "all"; if (argc > 1) { mode = argv[1]; } bool correctness_passed = true; bool performance_completed = true; try { if (mode == "correctness" || mode == "all") { correctness_passed = testCorrectness(); } if (mode == "performance" || mode == "all") { if (correctness_passed || mode == "performance") { benchmarkPerformance(); } else { std::cout << "跳过性能测试,因为正确性测试未通过" << std::endl; performance_completed = false; } } std::cout << "\n=== 测试完成 ===" << std::endl; std::cout << "实现状态: " << ReduceSumAlgorithm::getImplementationStatus() << std::endl; if (mode == "all") { std::cout << "正确性: " << (correctness_passed ? "通过" : "失败") << std::endl; std::cout << "性能测试: " << (performance_completed ? "完成" : "跳过") << std::endl; } return correctness_passed ? 0 : 1; } catch (const std::exception& e) { std::cerr << "测试出错: " << e.what() << std::endl; return 1; } }