Browse Source

[FIX] merge failures

tags/v0.3.2
liuht 1 year ago
parent
commit
04f98ffa5e
1 changed files with 2 additions and 45 deletions
  1. +2
    -45
      examples/dataset_table_workflow/homo.py

+ 2
- 45
examples/dataset_table_workflow/homo.py View File

@@ -105,22 +105,13 @@ class HomogeneousDatasetWorkflow(TableWorkflow):
)
def labeled_homo_table_example(self, skip_test=False):
def labeled_homo_table_example(self, skip_test=True):
logger.info("Total Item: %d" % (len(self.market)))
methods = ["user_model", "homo_single_aug", "homo_ensemble_pruning"]
methods_to_retest = []
recorders = {method: Recorder() for method in methods}
user = self.benchmark.name
if not skip_test:
for idx in range(self.benchmark.user_num):
test_x, test_y = self.benchmark.get_test_data(user_ids=idx)
test_x, test_y = test_x.values, test_y.values
train_x, train_y = self.benchmark.get_train_data(user_ids=idx)
train_x, train_y = train_x.values, train_y.values
train_subsets = self.get_train_subsets(homo_n_labeled_list, homo_n_repeat_list, train_x, train_y)
if not skip_test:
for idx in range(self.benchmark.user_num):
test_x, test_y = self.benchmark.get_test_data(user_ids=idx)
@@ -130,10 +121,6 @@ class HomogeneousDatasetWorkflow(TableWorkflow):
train_x, train_y = train_x.values, train_y.values
train_subsets = self.get_train_subsets(homo_n_labeled_list, homo_n_repeat_list, train_x, train_y)

user_stat_spec = generate_stat_spec(type="table", X=test_x)
user_info = BaseUserInfo(
semantic_spec=self.user_semantic, stat_info={"RKMETableSpecification": user_stat_spec}
)
logger.info(f"Searching Market for user: {user}_{idx}")
user_stat_spec = generate_stat_spec(type="table", X=test_x)
user_info = BaseUserInfo(
@@ -141,28 +128,15 @@ class HomogeneousDatasetWorkflow(TableWorkflow):
)
logger.info(f"Searching Market for user: {user}_{idx}")

search_result = self.market.search_learnware(user_info)
single_result = search_result.get_single_results()
multiple_result = search_result.get_multiple_results()
search_result = self.market.search_learnware(user_info)
single_result = search_result.get_single_results()
multiple_result = search_result.get_multiple_results()

logger.info(f"search result of user {user}_{idx}:")
logger.info(
f"single model num: {len(single_result)}, max_score: {single_result[0].score}, min_score: {single_result[-1].score}"
)
logger.info(f"search result of user {user}_{idx}:")
logger.info(
f"single model num: {len(single_result)}, max_score: {single_result[0].score}, min_score: {single_result[-1].score}"
)

if len(multiple_result) > 0:
mixture_id = " ".join([learnware.id for learnware in multiple_result[0].learnwares])
logger.info(f"mixture_score: {multiple_result[0].score}, mixture_learnware: {mixture_id}")
mixture_learnware_list = multiple_result[0].learnwares
else:
mixture_learnware_list = [single_result[0].learnware]
if len(multiple_result) > 0:
mixture_id = " ".join([learnware.id for learnware in multiple_result[0].learnwares])
logger.info(f"mixture_score: {multiple_result[0].score}, mixture_learnware: {mixture_id}")
@@ -177,13 +151,6 @@ class HomogeneousDatasetWorkflow(TableWorkflow):
"homo_single_aug": {"single_learnware": [single_result[0].learnware]},
"homo_ensemble_pruning": common_config
}
test_info = {"user": user, "idx": idx, "train_subsets": train_subsets, "test_x": test_x, "test_y": test_y}
common_config = {"learnwares": mixture_learnware_list}
method_configs = {
"user_model": {"dataset": self.benchmark.name, "model_type": "lgb"},
"homo_single_aug": {"single_learnware": [single_result[0].learnware]},
"homo_ensemble_pruning": common_config
}

for method_name in methods:
logger.info(f"Testing method {method_name}")
@@ -194,15 +161,5 @@ class HomogeneousDatasetWorkflow(TableWorkflow):
for method, recorder in recorders.items():
recorder.save(os.path.join(self.curves_result_path, f"{user}/{user}_{method}_performance.json"))
for method_name in methods:
logger.info(f"Testing method {method_name}")
test_info["method_name"] = method_name
test_info["force"] = method_name in methods_to_retest
test_info.update(method_configs[method_name])
self.test_method(test_info, recorders, loss_func=loss_func_rmse)
for method, recorder in recorders.items():
recorder.save(os.path.join(self.curves_result_path, f"{user}/{user}_{method}_performance.json"))
plot_performance_curves(self.curves_result_path, user, recorders, task="Homo", n_labeled_list=homo_n_labeled_list)

plot_performance_curves(self.curves_result_path, user, recorders, task="Homo", n_labeled_list=homo_n_labeled_list)

Loading…
Cancel
Save