|
- import os
- import warnings
- import numpy as np
- warnings.filterwarnings("ignore")
-
- from learnware.market import BaseUserInfo
- from learnware.logger import get_module_logger
- from learnware.specification import generate_stat_spec
- from learnware.reuse import AveragingReuser, JobSelectorReuser, EnsemblePruningReuser
-
- from methods import *
- from base import TableWorkflow
- from config import homo_n_labeled_list, homo_n_repeat_list
- from utils import Recorder, plot_performance_curves
-
- logger = get_module_logger("homo_table", level="INFO")
-
-
- class HomogeneousDatasetWorkflow(TableWorkflow):
- def unlabeled_homo_table_example(self):
- logger.info("Total Item: %d" % (len(self.market)))
- learnware_rmse_list = []
- single_score_list = []
- job_selector_score_list = []
- ensemble_score_list = []
- all_learnwares = self.market.get_learnwares()
-
- user = self.benchmark.name
- for idx in range(self.benchmark.user_num):
- test_x, test_y = self.benchmark.get_test_data(user_ids=idx)
- test_x, test_y = test_x.values, test_y.values
- user_stat_spec = generate_stat_spec(type="table", X=test_x)
- user_info = BaseUserInfo(
- semantic_spec=self.user_semantic, stat_info={user_stat_spec.type: user_stat_spec}
- )
- logger.info(f"Searching Market for user: {user}_{idx}")
-
- search_result = self.market.search_learnware(user_info, max_search_num=2)
- single_result = search_result.get_single_results()
- multiple_result = search_result.get_multiple_results()
-
- logger.info(f"search result of user {user}_{idx}:")
- logger.info(
- f"single model num: {len(single_result)}, max_score: {single_result[0].score}, min_score: {single_result[-1].score}"
- )
-
- pred_y = single_result[0].learnware.predict(test_x)
- single_score_list.append(loss_func_rmse(pred_y, test_y))
-
- rmse_list = []
- for learnware in all_learnwares:
- semantic_spec = learnware.specification.get_semantic_spec()
- if semantic_spec["Input"]["Dimension"] == test_x.shape[1]:
- pred_y = learnware.predict(test_x)
- rmse_list.append(loss_func_rmse(pred_y, test_y))
- logger.info(
- f"Top1-score: {single_result[0].score}, learnware_id: {single_result[0].learnware.id}, rmse: {single_score_list[-1]}"
- )
-
- if len(multiple_result) > 0:
- mixture_id = " ".join([learnware.id for learnware in multiple_result[0].learnwares])
- logger.info(f"mixture_score: {multiple_result[0].score}, mixture_learnware: {mixture_id}")
- mixture_learnware_list = multiple_result[0].learnwares
- else:
- mixture_learnware_list = [single_result[0].learnware]
-
- # test reuse (job selector)
- reuse_baseline = JobSelectorReuser(learnware_list=mixture_learnware_list, herding_num=100)
- reuse_predict = reuse_baseline.predict(user_data=test_x)
- reuse_score = loss_func_rmse(reuse_predict, test_y)
- job_selector_score_list.append(reuse_score)
- logger.info(f"mixture reuse rmse (job selector): {reuse_score}")
-
- # test reuse (ensemble)
- reuse_ensemble = AveragingReuser(learnware_list=mixture_learnware_list, mode="mean")
- ensemble_predict_y = reuse_ensemble.predict(user_data=test_x)
- ensemble_score = loss_func_rmse(ensemble_predict_y, test_y)
- ensemble_score_list.append(ensemble_score)
- logger.info(f"mixture reuse rmse (ensemble): {ensemble_score}")
-
- learnware_rmse_list.append(rmse_list)
-
- single_list = np.array(learnware_rmse_list)
- avg_score_list = [np.mean(lst, axis=0) for lst in single_list]
- oracle_score_list = [np.min(lst, axis=0) for lst in single_list]
-
- logger.info(
- "RMSE of selected learnware: %.3f +/- %.3f, Average performance: %.3f +/- %.3f, Oracle performace: %.3f +/- %.3f"
- % (
- np.mean(single_score_list),
- np.std(single_score_list),
- np.mean(avg_score_list),
- np.std(avg_score_list),
- np.mean(oracle_score_list),
- np.std(oracle_score_list),
- )
- )
- logger.info(
- "Average Job Selector Reuse Performance: %.3f +/- %.3f"
- % (np.mean(job_selector_score_list), np.std(job_selector_score_list))
- )
- logger.info(
- "Averaging Ensemble Reuse Performance: %.3f +/- %.3f"
- % (np.mean(ensemble_score_list), np.std(ensemble_score_list))
- )
-
-
- def labeled_homo_table_example(self, skip_test=True):
- logger.info("Total Item: %d" % (len(self.market)))
- methods = ["user_model", "homo_single_aug", "homo_ensemble_pruning"]
- methods_to_retest = []
- recorders = {method: Recorder() for method in methods}
- user = self.benchmark.name
-
- if not skip_test:
- for idx in range(self.benchmark.user_num):
- test_x, test_y = self.benchmark.get_test_data(user_ids=idx)
- test_x, test_y = test_x.values, test_y.values
-
- train_x, train_y = self.benchmark.get_train_data(user_ids=idx)
- train_x, train_y = train_x.values, train_y.values
- train_subsets = self.get_train_subsets(homo_n_labeled_list, homo_n_repeat_list, train_x, train_y)
-
- logger.info(f"Searching Market for user: {user}_{idx}")
- user_stat_spec = generate_stat_spec(type="table", X=test_x)
- user_info = BaseUserInfo(
- semantic_spec=self.user_semantic, stat_info={"RKMETableSpecification": user_stat_spec}
- )
- logger.info(f"Searching Market for user: {user}_{idx}")
-
- search_result = self.market.search_learnware(user_info)
- single_result = search_result.get_single_results()
- multiple_result = search_result.get_multiple_results()
-
- logger.info(f"search result of user {user}_{idx}:")
- logger.info(
- f"single model num: {len(single_result)}, max_score: {single_result[0].score}, min_score: {single_result[-1].score}"
- )
-
- if len(multiple_result) > 0:
- mixture_id = " ".join([learnware.id for learnware in multiple_result[0].learnwares])
- logger.info(f"mixture_score: {multiple_result[0].score}, mixture_learnware: {mixture_id}")
- mixture_learnware_list = multiple_result[0].learnwares
- else:
- mixture_learnware_list = [single_result[0].learnware]
-
- test_info = {"user": user, "idx": idx, "train_subsets": train_subsets, "test_x": test_x, "test_y": test_y}
- common_config = {"learnwares": mixture_learnware_list}
- method_configs = {
- "user_model": {"dataset": self.benchmark.name, "model_type": "lgb"},
- "homo_single_aug": {"single_learnware": [single_result[0].learnware]},
- "homo_ensemble_pruning": common_config
- }
-
- for method_name in methods:
- logger.info(f"Testing method {method_name}")
- test_info["method_name"] = method_name
- test_info["force"] = method_name in methods_to_retest
- test_info.update(method_configs[method_name])
- self.test_method(test_info, recorders, loss_func=loss_func_rmse)
-
- for method, recorder in recorders.items():
- recorder.save(os.path.join(self.curves_result_path, f"{user}/{user}_{method}_performance.json"))
-
- plot_performance_curves(self.curves_result_path, user, recorders, task="Homo", n_labeled_list=homo_n_labeled_list)
|