|
- *> \brief \b CHEMM
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
- *
- * .. Scalar Arguments ..
- * COMPLEX ALPHA,BETA
- * INTEGER LDA,LDB,LDC,M,N
- * CHARACTER SIDE,UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHEMM performs one of the matrix-matrix operations
- *>
- *> C := alpha*A*B + beta*C,
- *>
- *> or
- *>
- *> C := alpha*B*A + beta*C,
- *>
- *> where alpha and beta are scalars, A is an hermitian matrix and B and
- *> C are m by n matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> On entry, SIDE specifies whether the hermitian matrix A
- *> appears on the left or right in the operation as follows:
- *>
- *> SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
- *>
- *> SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the hermitian matrix A is to be
- *> referenced as follows:
- *>
- *> UPLO = 'U' or 'u' Only the upper triangular part of the
- *> hermitian matrix is to be referenced.
- *>
- *> UPLO = 'L' or 'l' Only the lower triangular part of the
- *> hermitian matrix is to be referenced.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the number of rows of the matrix C.
- *> M must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of the matrix C.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> On entry, ALPHA specifies the scalar alpha.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array of DIMENSION ( LDA, ka ), where ka is
- *> m when SIDE = 'L' or 'l' and is n otherwise.
- *> Before entry with SIDE = 'L' or 'l', the m by m part of
- *> the array A must contain the hermitian matrix, such that
- *> when UPLO = 'U' or 'u', the leading m by m upper triangular
- *> part of the array A must contain the upper triangular part
- *> of the hermitian matrix and the strictly lower triangular
- *> part of A is not referenced, and when UPLO = 'L' or 'l',
- *> the leading m by m lower triangular part of the array A
- *> must contain the lower triangular part of the hermitian
- *> matrix and the strictly upper triangular part of A is not
- *> referenced.
- *> Before entry with SIDE = 'R' or 'r', the n by n part of
- *> the array A must contain the hermitian matrix, such that
- *> when UPLO = 'U' or 'u', the leading n by n upper triangular
- *> part of the array A must contain the upper triangular part
- *> of the hermitian matrix and the strictly lower triangular
- *> part of A is not referenced, and when UPLO = 'L' or 'l',
- *> the leading n by n lower triangular part of the array A
- *> must contain the lower triangular part of the hermitian
- *> matrix and the strictly upper triangular part of A is not
- *> referenced.
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set, they are assumed to be zero.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. When SIDE = 'L' or 'l' then
- *> LDA must be at least max( 1, m ), otherwise LDA must be at
- *> least max( 1, n ).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array of DIMENSION ( LDB, n ).
- *> Before entry, the leading m by n part of the array B must
- *> contain the matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> On entry, LDB specifies the first dimension of B as declared
- *> in the calling (sub) program. LDB must be at least
- *> max( 1, m ).
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX
- *> On entry, BETA specifies the scalar beta. When BETA is
- *> supplied as zero then C need not be set on input.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX array of DIMENSION ( LDC, n ).
- *> Before entry, the leading m by n part of the array C must
- *> contain the matrix C, except when beta is zero, in which
- *> case C need not be set on entry.
- *> On exit, the array C is overwritten by the m by n updated
- *> matrix.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> On entry, LDC specifies the first dimension of C as declared
- *> in the calling (sub) program. LDC must be at least
- *> max( 1, m ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_blas_level3
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 3 Blas routine.
- *>
- *> -- Written on 8-February-1989.
- *> Jack Dongarra, Argonne National Laboratory.
- *> Iain Duff, AERE Harwell.
- *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
- *> Sven Hammarling, Numerical Algorithms Group Ltd.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
- *
- * -- Reference BLAS level3 routine (version 3.4.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- COMPLEX ALPHA,BETA
- INTEGER LDA,LDB,LDC,M,N
- CHARACTER SIDE,UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
- * ..
- *
- * =====================================================================
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,REAL
- * ..
- * .. Local Scalars ..
- COMPLEX TEMP1,TEMP2
- INTEGER I,INFO,J,K,NROWA
- LOGICAL UPPER
- * ..
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER (ONE= (1.0E+0,0.0E+0))
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
- * ..
- *
- * Set NROWA as the number of rows of A.
- *
- IF (LSAME(SIDE,'L')) THEN
- NROWA = M
- ELSE
- NROWA = N
- END IF
- UPPER = LSAME(UPLO,'U')
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
- INFO = 1
- ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
- INFO = 2
- ELSE IF (M.LT.0) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
- INFO = 7
- ELSE IF (LDB.LT.MAX(1,M)) THEN
- INFO = 9
- ELSE IF (LDC.LT.MAX(1,M)) THEN
- INFO = 12
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CHEMM ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
- *
- * And when alpha.eq.zero.
- *
- IF (ALPHA.EQ.ZERO) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 20 J = 1,N
- DO 10 I = 1,M
- C(I,J) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40 J = 1,N
- DO 30 I = 1,M
- C(I,J) = BETA*C(I,J)
- 30 CONTINUE
- 40 CONTINUE
- END IF
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF (LSAME(SIDE,'L')) THEN
- *
- * Form C := alpha*A*B + beta*C.
- *
- IF (UPPER) THEN
- DO 70 J = 1,N
- DO 60 I = 1,M
- TEMP1 = ALPHA*B(I,J)
- TEMP2 = ZERO
- DO 50 K = 1,I - 1
- C(K,J) = C(K,J) + TEMP1*A(K,I)
- TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I))
- 50 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2
- ELSE
- C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) +
- + ALPHA*TEMP2
- END IF
- 60 CONTINUE
- 70 CONTINUE
- ELSE
- DO 100 J = 1,N
- DO 90 I = M,1,-1
- TEMP1 = ALPHA*B(I,J)
- TEMP2 = ZERO
- DO 80 K = I + 1,M
- C(K,J) = C(K,J) + TEMP1*A(K,I)
- TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I))
- 80 CONTINUE
- IF (BETA.EQ.ZERO) THEN
- C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2
- ELSE
- C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) +
- + ALPHA*TEMP2
- END IF
- 90 CONTINUE
- 100 CONTINUE
- END IF
- ELSE
- *
- * Form C := alpha*B*A + beta*C.
- *
- DO 170 J = 1,N
- TEMP1 = ALPHA*REAL(A(J,J))
- IF (BETA.EQ.ZERO) THEN
- DO 110 I = 1,M
- C(I,J) = TEMP1*B(I,J)
- 110 CONTINUE
- ELSE
- DO 120 I = 1,M
- C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
- 120 CONTINUE
- END IF
- DO 140 K = 1,J - 1
- IF (UPPER) THEN
- TEMP1 = ALPHA*A(K,J)
- ELSE
- TEMP1 = ALPHA*CONJG(A(J,K))
- END IF
- DO 130 I = 1,M
- C(I,J) = C(I,J) + TEMP1*B(I,K)
- 130 CONTINUE
- 140 CONTINUE
- DO 160 K = J + 1,N
- IF (UPPER) THEN
- TEMP1 = ALPHA*CONJG(A(J,K))
- ELSE
- TEMP1 = ALPHA*A(K,J)
- END IF
- DO 150 I = 1,M
- C(I,J) = C(I,J) + TEMP1*B(I,K)
- 150 CONTINUE
- 160 CONTINUE
- 170 CONTINUE
- END IF
- *
- RETURN
- *
- * End of CHEMM .
- *
- END
|