You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chemm.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. *> \brief \b CHEMM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX ALPHA,BETA
  15. * INTEGER LDA,LDB,LDC,M,N
  16. * CHARACTER SIDE,UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CHEMM performs one of the matrix-matrix operations
  29. *>
  30. *> C := alpha*A*B + beta*C,
  31. *>
  32. *> or
  33. *>
  34. *> C := alpha*B*A + beta*C,
  35. *>
  36. *> where alpha and beta are scalars, A is an hermitian matrix and B and
  37. *> C are m by n matrices.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] SIDE
  44. *> \verbatim
  45. *> SIDE is CHARACTER*1
  46. *> On entry, SIDE specifies whether the hermitian matrix A
  47. *> appears on the left or right in the operation as follows:
  48. *>
  49. *> SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
  50. *>
  51. *> SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
  52. *> \endverbatim
  53. *>
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> On entry, UPLO specifies whether the upper or lower
  58. *> triangular part of the hermitian matrix A is to be
  59. *> referenced as follows:
  60. *>
  61. *> UPLO = 'U' or 'u' Only the upper triangular part of the
  62. *> hermitian matrix is to be referenced.
  63. *>
  64. *> UPLO = 'L' or 'l' Only the lower triangular part of the
  65. *> hermitian matrix is to be referenced.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] M
  69. *> \verbatim
  70. *> M is INTEGER
  71. *> On entry, M specifies the number of rows of the matrix C.
  72. *> M must be at least zero.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> On entry, N specifies the number of columns of the matrix C.
  79. *> N must be at least zero.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] ALPHA
  83. *> \verbatim
  84. *> ALPHA is COMPLEX
  85. *> On entry, ALPHA specifies the scalar alpha.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] A
  89. *> \verbatim
  90. *> A is COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  91. *> m when SIDE = 'L' or 'l' and is n otherwise.
  92. *> Before entry with SIDE = 'L' or 'l', the m by m part of
  93. *> the array A must contain the hermitian matrix, such that
  94. *> when UPLO = 'U' or 'u', the leading m by m upper triangular
  95. *> part of the array A must contain the upper triangular part
  96. *> of the hermitian matrix and the strictly lower triangular
  97. *> part of A is not referenced, and when UPLO = 'L' or 'l',
  98. *> the leading m by m lower triangular part of the array A
  99. *> must contain the lower triangular part of the hermitian
  100. *> matrix and the strictly upper triangular part of A is not
  101. *> referenced.
  102. *> Before entry with SIDE = 'R' or 'r', the n by n part of
  103. *> the array A must contain the hermitian matrix, such that
  104. *> when UPLO = 'U' or 'u', the leading n by n upper triangular
  105. *> part of the array A must contain the upper triangular part
  106. *> of the hermitian matrix and the strictly lower triangular
  107. *> part of A is not referenced, and when UPLO = 'L' or 'l',
  108. *> the leading n by n lower triangular part of the array A
  109. *> must contain the lower triangular part of the hermitian
  110. *> matrix and the strictly upper triangular part of A is not
  111. *> referenced.
  112. *> Note that the imaginary parts of the diagonal elements need
  113. *> not be set, they are assumed to be zero.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDA
  117. *> \verbatim
  118. *> LDA is INTEGER
  119. *> On entry, LDA specifies the first dimension of A as declared
  120. *> in the calling (sub) program. When SIDE = 'L' or 'l' then
  121. *> LDA must be at least max( 1, m ), otherwise LDA must be at
  122. *> least max( 1, n ).
  123. *> \endverbatim
  124. *>
  125. *> \param[in] B
  126. *> \verbatim
  127. *> B is COMPLEX array of DIMENSION ( LDB, n ).
  128. *> Before entry, the leading m by n part of the array B must
  129. *> contain the matrix B.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDB
  133. *> \verbatim
  134. *> LDB is INTEGER
  135. *> On entry, LDB specifies the first dimension of B as declared
  136. *> in the calling (sub) program. LDB must be at least
  137. *> max( 1, m ).
  138. *> \endverbatim
  139. *>
  140. *> \param[in] BETA
  141. *> \verbatim
  142. *> BETA is COMPLEX
  143. *> On entry, BETA specifies the scalar beta. When BETA is
  144. *> supplied as zero then C need not be set on input.
  145. *> \endverbatim
  146. *>
  147. *> \param[in,out] C
  148. *> \verbatim
  149. *> C is COMPLEX array of DIMENSION ( LDC, n ).
  150. *> Before entry, the leading m by n part of the array C must
  151. *> contain the matrix C, except when beta is zero, in which
  152. *> case C need not be set on entry.
  153. *> On exit, the array C is overwritten by the m by n updated
  154. *> matrix.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDC
  158. *> \verbatim
  159. *> LDC is INTEGER
  160. *> On entry, LDC specifies the first dimension of C as declared
  161. *> in the calling (sub) program. LDC must be at least
  162. *> max( 1, m ).
  163. *> \endverbatim
  164. *
  165. * Authors:
  166. * ========
  167. *
  168. *> \author Univ. of Tennessee
  169. *> \author Univ. of California Berkeley
  170. *> \author Univ. of Colorado Denver
  171. *> \author NAG Ltd.
  172. *
  173. *> \date November 2011
  174. *
  175. *> \ingroup complex_blas_level3
  176. *
  177. *> \par Further Details:
  178. * =====================
  179. *>
  180. *> \verbatim
  181. *>
  182. *> Level 3 Blas routine.
  183. *>
  184. *> -- Written on 8-February-1989.
  185. *> Jack Dongarra, Argonne National Laboratory.
  186. *> Iain Duff, AERE Harwell.
  187. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  188. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  189. *> \endverbatim
  190. *>
  191. * =====================================================================
  192. SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  193. *
  194. * -- Reference BLAS level3 routine (version 3.4.0) --
  195. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  196. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197. * November 2011
  198. *
  199. * .. Scalar Arguments ..
  200. COMPLEX ALPHA,BETA
  201. INTEGER LDA,LDB,LDC,M,N
  202. CHARACTER SIDE,UPLO
  203. * ..
  204. * .. Array Arguments ..
  205. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  206. * ..
  207. *
  208. * =====================================================================
  209. *
  210. * .. External Functions ..
  211. LOGICAL LSAME
  212. EXTERNAL LSAME
  213. * ..
  214. * .. External Subroutines ..
  215. EXTERNAL XERBLA
  216. * ..
  217. * .. Intrinsic Functions ..
  218. INTRINSIC CONJG,MAX,REAL
  219. * ..
  220. * .. Local Scalars ..
  221. COMPLEX TEMP1,TEMP2
  222. INTEGER I,INFO,J,K,NROWA
  223. LOGICAL UPPER
  224. * ..
  225. * .. Parameters ..
  226. COMPLEX ONE
  227. PARAMETER (ONE= (1.0E+0,0.0E+0))
  228. COMPLEX ZERO
  229. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  230. * ..
  231. *
  232. * Set NROWA as the number of rows of A.
  233. *
  234. IF (LSAME(SIDE,'L')) THEN
  235. NROWA = M
  236. ELSE
  237. NROWA = N
  238. END IF
  239. UPPER = LSAME(UPLO,'U')
  240. *
  241. * Test the input parameters.
  242. *
  243. INFO = 0
  244. IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
  245. INFO = 1
  246. ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  247. INFO = 2
  248. ELSE IF (M.LT.0) THEN
  249. INFO = 3
  250. ELSE IF (N.LT.0) THEN
  251. INFO = 4
  252. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  253. INFO = 7
  254. ELSE IF (LDB.LT.MAX(1,M)) THEN
  255. INFO = 9
  256. ELSE IF (LDC.LT.MAX(1,M)) THEN
  257. INFO = 12
  258. END IF
  259. IF (INFO.NE.0) THEN
  260. CALL XERBLA('CHEMM ',INFO)
  261. RETURN
  262. END IF
  263. *
  264. * Quick return if possible.
  265. *
  266. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  267. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  268. *
  269. * And when alpha.eq.zero.
  270. *
  271. IF (ALPHA.EQ.ZERO) THEN
  272. IF (BETA.EQ.ZERO) THEN
  273. DO 20 J = 1,N
  274. DO 10 I = 1,M
  275. C(I,J) = ZERO
  276. 10 CONTINUE
  277. 20 CONTINUE
  278. ELSE
  279. DO 40 J = 1,N
  280. DO 30 I = 1,M
  281. C(I,J) = BETA*C(I,J)
  282. 30 CONTINUE
  283. 40 CONTINUE
  284. END IF
  285. RETURN
  286. END IF
  287. *
  288. * Start the operations.
  289. *
  290. IF (LSAME(SIDE,'L')) THEN
  291. *
  292. * Form C := alpha*A*B + beta*C.
  293. *
  294. IF (UPPER) THEN
  295. DO 70 J = 1,N
  296. DO 60 I = 1,M
  297. TEMP1 = ALPHA*B(I,J)
  298. TEMP2 = ZERO
  299. DO 50 K = 1,I - 1
  300. C(K,J) = C(K,J) + TEMP1*A(K,I)
  301. TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I))
  302. 50 CONTINUE
  303. IF (BETA.EQ.ZERO) THEN
  304. C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2
  305. ELSE
  306. C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) +
  307. + ALPHA*TEMP2
  308. END IF
  309. 60 CONTINUE
  310. 70 CONTINUE
  311. ELSE
  312. DO 100 J = 1,N
  313. DO 90 I = M,1,-1
  314. TEMP1 = ALPHA*B(I,J)
  315. TEMP2 = ZERO
  316. DO 80 K = I + 1,M
  317. C(K,J) = C(K,J) + TEMP1*A(K,I)
  318. TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I))
  319. 80 CONTINUE
  320. IF (BETA.EQ.ZERO) THEN
  321. C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2
  322. ELSE
  323. C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) +
  324. + ALPHA*TEMP2
  325. END IF
  326. 90 CONTINUE
  327. 100 CONTINUE
  328. END IF
  329. ELSE
  330. *
  331. * Form C := alpha*B*A + beta*C.
  332. *
  333. DO 170 J = 1,N
  334. TEMP1 = ALPHA*REAL(A(J,J))
  335. IF (BETA.EQ.ZERO) THEN
  336. DO 110 I = 1,M
  337. C(I,J) = TEMP1*B(I,J)
  338. 110 CONTINUE
  339. ELSE
  340. DO 120 I = 1,M
  341. C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
  342. 120 CONTINUE
  343. END IF
  344. DO 140 K = 1,J - 1
  345. IF (UPPER) THEN
  346. TEMP1 = ALPHA*A(K,J)
  347. ELSE
  348. TEMP1 = ALPHA*CONJG(A(J,K))
  349. END IF
  350. DO 130 I = 1,M
  351. C(I,J) = C(I,J) + TEMP1*B(I,K)
  352. 130 CONTINUE
  353. 140 CONTINUE
  354. DO 160 K = J + 1,N
  355. IF (UPPER) THEN
  356. TEMP1 = ALPHA*CONJG(A(J,K))
  357. ELSE
  358. TEMP1 = ALPHA*A(K,J)
  359. END IF
  360. DO 150 I = 1,M
  361. C(I,J) = C(I,J) + TEMP1*B(I,K)
  362. 150 CONTINUE
  363. 160 CONTINUE
  364. 170 CONTINUE
  365. END IF
  366. *
  367. RETURN
  368. *
  369. * End of CHEMM .
  370. *
  371. END