|
- *> \brief \b ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLA_GERCOND_C + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_c.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_c.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_c.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
- * LDAF, IPIV, C, CAPPLY,
- * INFO, WORK, RWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * LOGICAL CAPPLY
- * INTEGER N, LDA, LDAF, INFO
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
- * DOUBLE PRECISION C( * ), RWORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLA_GERCOND_C computes the infinity norm condition number of
- *> op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is COMPLEX*16 array, dimension (LDAF,N)
- *> The factors L and U from the factorization
- *> A = P*L*U as computed by ZGETRF.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from the factorization A = P*L*U
- *> as computed by ZGETRF; row i of the matrix was interchanged
- *> with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (N)
- *> The vector C in the formula op(A) * inv(diag(C)).
- *> \endverbatim
- *>
- *> \param[in] CAPPLY
- *> \verbatim
- *> CAPPLY is LOGICAL
- *> If .TRUE. then access the vector C in the formula above.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit.
- *> i > 0: The ith argument is invalid.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (2*N).
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N).
- *> Workspace.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16GEcomputational
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
- $ LDAF, IPIV, C, CAPPLY,
- $ INFO, WORK, RWORK )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- LOGICAL CAPPLY
- INTEGER N, LDA, LDAF, INFO
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
- DOUBLE PRECISION C( * ), RWORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL NOTRANS
- INTEGER KASE, I, J
- DOUBLE PRECISION AINVNM, ANORM, TMP
- COMPLEX*16 ZDUM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLACN2, ZGETRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, REAL, DIMAG
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function Definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- ZLA_GERCOND_C = 0.0D+0
- *
- INFO = 0
- NOTRANS = LSAME( TRANS, 'N' )
- IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZLA_GERCOND_C', -INFO )
- RETURN
- END IF
- *
- * Compute norm of op(A)*op2(C).
- *
- ANORM = 0.0D+0
- IF ( NOTRANS ) THEN
- DO I = 1, N
- TMP = 0.0D+0
- IF ( CAPPLY ) THEN
- DO J = 1, N
- TMP = TMP + CABS1( A( I, J ) ) / C( J )
- END DO
- ELSE
- DO J = 1, N
- TMP = TMP + CABS1( A( I, J ) )
- END DO
- END IF
- RWORK( I ) = TMP
- ANORM = MAX( ANORM, TMP )
- END DO
- ELSE
- DO I = 1, N
- TMP = 0.0D+0
- IF ( CAPPLY ) THEN
- DO J = 1, N
- TMP = TMP + CABS1( A( J, I ) ) / C( J )
- END DO
- ELSE
- DO J = 1, N
- TMP = TMP + CABS1( A( J, I ) )
- END DO
- END IF
- RWORK( I ) = TMP
- ANORM = MAX( ANORM, TMP )
- END DO
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 ) THEN
- ZLA_GERCOND_C = 1.0D+0
- RETURN
- ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
- RETURN
- END IF
- *
- * Estimate the norm of inv(op(A)).
- *
- AINVNM = 0.0D+0
- *
- KASE = 0
- 10 CONTINUE
- CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.2 ) THEN
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * RWORK( I )
- END DO
- *
- IF (NOTRANS) THEN
- CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
- $ WORK, N, INFO )
- ELSE
- CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
- $ WORK, N, INFO )
- ENDIF
- *
- * Multiply by inv(C).
- *
- IF ( CAPPLY ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
- ELSE
- *
- * Multiply by inv(C**H).
- *
- IF ( CAPPLY ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
- *
- IF ( NOTRANS ) THEN
- CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
- $ WORK, N, INFO )
- ELSE
- CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
- $ WORK, N, INFO )
- END IF
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * RWORK( I )
- END DO
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM .NE. 0.0D+0 )
- $ ZLA_GERCOND_C = 1.0D+0 / AINVNM
- *
- RETURN
- *
- * End of ZLA_GERCOND_C
- *
- END
|