You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zla_gercond_c.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. *> \brief \b ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLA_GERCOND_C + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_c.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_c.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_c.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
  22. * LDAF, IPIV, C, CAPPLY,
  23. * INFO, WORK, RWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER TRANS
  27. * LOGICAL CAPPLY
  28. * INTEGER N, LDA, LDAF, INFO
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IPIV( * )
  32. * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
  33. * DOUBLE PRECISION C( * ), RWORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZLA_GERCOND_C computes the infinity norm condition number of
  43. *> op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> Specifies the form of the system of equations:
  53. *> = 'N': A * X = B (No transpose)
  54. *> = 'T': A**T * X = B (Transpose)
  55. *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of linear equations, i.e., the order of the
  62. *> matrix A. N >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] A
  66. *> \verbatim
  67. *> A is COMPLEX*16 array, dimension (LDA,N)
  68. *> On entry, the N-by-N matrix A
  69. *> \endverbatim
  70. *>
  71. *> \param[in] LDA
  72. *> \verbatim
  73. *> LDA is INTEGER
  74. *> The leading dimension of the array A. LDA >= max(1,N).
  75. *> \endverbatim
  76. *>
  77. *> \param[in] AF
  78. *> \verbatim
  79. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  80. *> The factors L and U from the factorization
  81. *> A = P*L*U as computed by ZGETRF.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDAF
  85. *> \verbatim
  86. *> LDAF is INTEGER
  87. *> The leading dimension of the array AF. LDAF >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[in] IPIV
  91. *> \verbatim
  92. *> IPIV is INTEGER array, dimension (N)
  93. *> The pivot indices from the factorization A = P*L*U
  94. *> as computed by ZGETRF; row i of the matrix was interchanged
  95. *> with row IPIV(i).
  96. *> \endverbatim
  97. *>
  98. *> \param[in] C
  99. *> \verbatim
  100. *> C is DOUBLE PRECISION array, dimension (N)
  101. *> The vector C in the formula op(A) * inv(diag(C)).
  102. *> \endverbatim
  103. *>
  104. *> \param[in] CAPPLY
  105. *> \verbatim
  106. *> CAPPLY is LOGICAL
  107. *> If .TRUE. then access the vector C in the formula above.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] INFO
  111. *> \verbatim
  112. *> INFO is INTEGER
  113. *> = 0: Successful exit.
  114. *> i > 0: The ith argument is invalid.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> WORK is COMPLEX*16 array, dimension (2*N).
  120. *> Workspace.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] RWORK
  124. *> \verbatim
  125. *> RWORK is DOUBLE PRECISION array, dimension (N).
  126. *> Workspace.
  127. *> \endverbatim
  128. *
  129. * Authors:
  130. * ========
  131. *
  132. *> \author Univ. of Tennessee
  133. *> \author Univ. of California Berkeley
  134. *> \author Univ. of Colorado Denver
  135. *> \author NAG Ltd.
  136. *
  137. *> \ingroup complex16GEcomputational
  138. *
  139. * =====================================================================
  140. DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
  141. $ LDAF, IPIV, C, CAPPLY,
  142. $ INFO, WORK, RWORK )
  143. *
  144. * -- LAPACK computational routine --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. *
  148. * .. Scalar Arguments ..
  149. CHARACTER TRANS
  150. LOGICAL CAPPLY
  151. INTEGER N, LDA, LDAF, INFO
  152. * ..
  153. * .. Array Arguments ..
  154. INTEGER IPIV( * )
  155. COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
  156. DOUBLE PRECISION C( * ), RWORK( * )
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Local Scalars ..
  162. LOGICAL NOTRANS
  163. INTEGER KASE, I, J
  164. DOUBLE PRECISION AINVNM, ANORM, TMP
  165. COMPLEX*16 ZDUM
  166. * ..
  167. * .. Local Arrays ..
  168. INTEGER ISAVE( 3 )
  169. * ..
  170. * .. External Functions ..
  171. LOGICAL LSAME
  172. EXTERNAL LSAME
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL ZLACN2, ZGETRS, XERBLA
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC ABS, MAX, REAL, DIMAG
  179. * ..
  180. * .. Statement Functions ..
  181. DOUBLE PRECISION CABS1
  182. * ..
  183. * .. Statement Function Definitions ..
  184. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  185. * ..
  186. * .. Executable Statements ..
  187. ZLA_GERCOND_C = 0.0D+0
  188. *
  189. INFO = 0
  190. NOTRANS = LSAME( TRANS, 'N' )
  191. IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  192. $ LSAME( TRANS, 'C' ) ) THEN
  193. INFO = -1
  194. ELSE IF( N.LT.0 ) THEN
  195. INFO = -2
  196. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  197. INFO = -4
  198. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  199. INFO = -6
  200. END IF
  201. IF( INFO.NE.0 ) THEN
  202. CALL XERBLA( 'ZLA_GERCOND_C', -INFO )
  203. RETURN
  204. END IF
  205. *
  206. * Compute norm of op(A)*op2(C).
  207. *
  208. ANORM = 0.0D+0
  209. IF ( NOTRANS ) THEN
  210. DO I = 1, N
  211. TMP = 0.0D+0
  212. IF ( CAPPLY ) THEN
  213. DO J = 1, N
  214. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  215. END DO
  216. ELSE
  217. DO J = 1, N
  218. TMP = TMP + CABS1( A( I, J ) )
  219. END DO
  220. END IF
  221. RWORK( I ) = TMP
  222. ANORM = MAX( ANORM, TMP )
  223. END DO
  224. ELSE
  225. DO I = 1, N
  226. TMP = 0.0D+0
  227. IF ( CAPPLY ) THEN
  228. DO J = 1, N
  229. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  230. END DO
  231. ELSE
  232. DO J = 1, N
  233. TMP = TMP + CABS1( A( J, I ) )
  234. END DO
  235. END IF
  236. RWORK( I ) = TMP
  237. ANORM = MAX( ANORM, TMP )
  238. END DO
  239. END IF
  240. *
  241. * Quick return if possible.
  242. *
  243. IF( N.EQ.0 ) THEN
  244. ZLA_GERCOND_C = 1.0D+0
  245. RETURN
  246. ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  247. RETURN
  248. END IF
  249. *
  250. * Estimate the norm of inv(op(A)).
  251. *
  252. AINVNM = 0.0D+0
  253. *
  254. KASE = 0
  255. 10 CONTINUE
  256. CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  257. IF( KASE.NE.0 ) THEN
  258. IF( KASE.EQ.2 ) THEN
  259. *
  260. * Multiply by R.
  261. *
  262. DO I = 1, N
  263. WORK( I ) = WORK( I ) * RWORK( I )
  264. END DO
  265. *
  266. IF (NOTRANS) THEN
  267. CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  268. $ WORK, N, INFO )
  269. ELSE
  270. CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  271. $ WORK, N, INFO )
  272. ENDIF
  273. *
  274. * Multiply by inv(C).
  275. *
  276. IF ( CAPPLY ) THEN
  277. DO I = 1, N
  278. WORK( I ) = WORK( I ) * C( I )
  279. END DO
  280. END IF
  281. ELSE
  282. *
  283. * Multiply by inv(C**H).
  284. *
  285. IF ( CAPPLY ) THEN
  286. DO I = 1, N
  287. WORK( I ) = WORK( I ) * C( I )
  288. END DO
  289. END IF
  290. *
  291. IF ( NOTRANS ) THEN
  292. CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  293. $ WORK, N, INFO )
  294. ELSE
  295. CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  296. $ WORK, N, INFO )
  297. END IF
  298. *
  299. * Multiply by R.
  300. *
  301. DO I = 1, N
  302. WORK( I ) = WORK( I ) * RWORK( I )
  303. END DO
  304. END IF
  305. GO TO 10
  306. END IF
  307. *
  308. * Compute the estimate of the reciprocal condition number.
  309. *
  310. IF( AINVNM .NE. 0.0D+0 )
  311. $ ZLA_GERCOND_C = 1.0D+0 / AINVNM
  312. *
  313. RETURN
  314. *
  315. * End of ZLA_GERCOND_C
  316. *
  317. END