|
- *> \brief \b SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLASD5 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd5.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd5.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd5.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
- *
- * .. Scalar Arguments ..
- * INTEGER I
- * REAL DSIGMA, RHO
- * ..
- * .. Array Arguments ..
- * REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This subroutine computes the square root of the I-th eigenvalue
- *> of a positive symmetric rank-one modification of a 2-by-2 diagonal
- *> matrix
- *>
- *> diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
- *>
- *> The diagonal entries in the array D are assumed to satisfy
- *>
- *> 0 <= D(i) < D(j) for i < j .
- *>
- *> We also assume RHO > 0 and that the Euclidean norm of the vector
- *> Z is one.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] I
- *> \verbatim
- *> I is INTEGER
- *> The index of the eigenvalue to be computed. I = 1 or I = 2.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (2)
- *> The original eigenvalues. We assume 0 <= D(1) < D(2).
- *> \endverbatim
- *>
- *> \param[in] Z
- *> \verbatim
- *> Z is REAL array, dimension (2)
- *> The components of the updating vector.
- *> \endverbatim
- *>
- *> \param[out] DELTA
- *> \verbatim
- *> DELTA is REAL array, dimension (2)
- *> Contains (D(j) - sigma_I) in its j-th component.
- *> The vector DELTA contains the information necessary
- *> to construct the eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RHO
- *> \verbatim
- *> RHO is REAL
- *> The scalar in the symmetric updating formula.
- *> \endverbatim
- *>
- *> \param[out] DSIGMA
- *> \verbatim
- *> DSIGMA is REAL
- *> The computed sigma_I, the I-th updated eigenvalue.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (2)
- *> WORK contains (D(j) + sigma_I) in its j-th component.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ren-Cang Li, Computer Science Division, University of California
- *> at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER I
- REAL DSIGMA, RHO
- * ..
- * .. Array Arguments ..
- REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO, THREE, FOUR
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
- $ THREE = 3.0E+0, FOUR = 4.0E+0 )
- * ..
- * .. Local Scalars ..
- REAL B, C, DEL, DELSQ, TAU, W
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- *
- DEL = D( 2 ) - D( 1 )
- DELSQ = DEL*( D( 2 )+D( 1 ) )
- IF( I.EQ.1 ) THEN
- W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
- $ Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
- IF( W.GT.ZERO ) THEN
- B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
- C = RHO*Z( 1 )*Z( 1 )*DELSQ
- *
- * B > ZERO, always
- *
- * The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
- *
- TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
- *
- * The following TAU is DSIGMA - D( 1 )
- *
- TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
- DSIGMA = D( 1 ) + TAU
- DELTA( 1 ) = -TAU
- DELTA( 2 ) = DEL - TAU
- WORK( 1 ) = TWO*D( 1 ) + TAU
- WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
- * DELTA( 1 ) = -Z( 1 ) / TAU
- * DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
- ELSE
- B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
- C = RHO*Z( 2 )*Z( 2 )*DELSQ
- *
- * The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
- *
- IF( B.GT.ZERO ) THEN
- TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
- ELSE
- TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
- END IF
- *
- * The following TAU is DSIGMA - D( 2 )
- *
- TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
- DSIGMA = D( 2 ) + TAU
- DELTA( 1 ) = -( DEL+TAU )
- DELTA( 2 ) = -TAU
- WORK( 1 ) = D( 1 ) + TAU + D( 2 )
- WORK( 2 ) = TWO*D( 2 ) + TAU
- * DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
- * DELTA( 2 ) = -Z( 2 ) / TAU
- END IF
- * TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
- * DELTA( 1 ) = DELTA( 1 ) / TEMP
- * DELTA( 2 ) = DELTA( 2 ) / TEMP
- ELSE
- *
- * Now I=2
- *
- B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
- C = RHO*Z( 2 )*Z( 2 )*DELSQ
- *
- * The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
- *
- IF( B.GT.ZERO ) THEN
- TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
- ELSE
- TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
- END IF
- *
- * The following TAU is DSIGMA - D( 2 )
- *
- TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
- DSIGMA = D( 2 ) + TAU
- DELTA( 1 ) = -( DEL+TAU )
- DELTA( 2 ) = -TAU
- WORK( 1 ) = D( 1 ) + TAU + D( 2 )
- WORK( 2 ) = TWO*D( 2 ) + TAU
- * DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
- * DELTA( 2 ) = -Z( 2 ) / TAU
- * TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
- * DELTA( 1 ) = DELTA( 1 ) / TEMP
- * DELTA( 2 ) = DELTA( 2 ) / TEMP
- END IF
- RETURN
- *
- * End of SLASD5
- *
- END
|