You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd5.f 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. *> \brief \b SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLASD5 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd5.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd5.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd5.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER I
  25. * REAL DSIGMA, RHO
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> This subroutine computes the square root of the I-th eigenvalue
  38. *> of a positive symmetric rank-one modification of a 2-by-2 diagonal
  39. *> matrix
  40. *>
  41. *> diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
  42. *>
  43. *> The diagonal entries in the array D are assumed to satisfy
  44. *>
  45. *> 0 <= D(i) < D(j) for i < j .
  46. *>
  47. *> We also assume RHO > 0 and that the Euclidean norm of the vector
  48. *> Z is one.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] I
  55. *> \verbatim
  56. *> I is INTEGER
  57. *> The index of the eigenvalue to be computed. I = 1 or I = 2.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] D
  61. *> \verbatim
  62. *> D is REAL array, dimension (2)
  63. *> The original eigenvalues. We assume 0 <= D(1) < D(2).
  64. *> \endverbatim
  65. *>
  66. *> \param[in] Z
  67. *> \verbatim
  68. *> Z is REAL array, dimension (2)
  69. *> The components of the updating vector.
  70. *> \endverbatim
  71. *>
  72. *> \param[out] DELTA
  73. *> \verbatim
  74. *> DELTA is REAL array, dimension (2)
  75. *> Contains (D(j) - sigma_I) in its j-th component.
  76. *> The vector DELTA contains the information necessary
  77. *> to construct the eigenvectors.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] RHO
  81. *> \verbatim
  82. *> RHO is REAL
  83. *> The scalar in the symmetric updating formula.
  84. *> \endverbatim
  85. *>
  86. *> \param[out] DSIGMA
  87. *> \verbatim
  88. *> DSIGMA is REAL
  89. *> The computed sigma_I, the I-th updated eigenvalue.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] WORK
  93. *> \verbatim
  94. *> WORK is REAL array, dimension (2)
  95. *> WORK contains (D(j) + sigma_I) in its j-th component.
  96. *> \endverbatim
  97. *
  98. * Authors:
  99. * ========
  100. *
  101. *> \author Univ. of Tennessee
  102. *> \author Univ. of California Berkeley
  103. *> \author Univ. of Colorado Denver
  104. *> \author NAG Ltd.
  105. *
  106. *> \ingroup OTHERauxiliary
  107. *
  108. *> \par Contributors:
  109. * ==================
  110. *>
  111. *> Ren-Cang Li, Computer Science Division, University of California
  112. *> at Berkeley, USA
  113. *>
  114. * =====================================================================
  115. SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
  116. *
  117. * -- LAPACK auxiliary routine --
  118. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. *
  121. * .. Scalar Arguments ..
  122. INTEGER I
  123. REAL DSIGMA, RHO
  124. * ..
  125. * .. Array Arguments ..
  126. REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. REAL ZERO, ONE, TWO, THREE, FOUR
  133. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
  134. $ THREE = 3.0E+0, FOUR = 4.0E+0 )
  135. * ..
  136. * .. Local Scalars ..
  137. REAL B, C, DEL, DELSQ, TAU, W
  138. * ..
  139. * .. Intrinsic Functions ..
  140. INTRINSIC ABS, SQRT
  141. * ..
  142. * .. Executable Statements ..
  143. *
  144. DEL = D( 2 ) - D( 1 )
  145. DELSQ = DEL*( D( 2 )+D( 1 ) )
  146. IF( I.EQ.1 ) THEN
  147. W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
  148. $ Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
  149. IF( W.GT.ZERO ) THEN
  150. B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
  151. C = RHO*Z( 1 )*Z( 1 )*DELSQ
  152. *
  153. * B > ZERO, always
  154. *
  155. * The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
  156. *
  157. TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
  158. *
  159. * The following TAU is DSIGMA - D( 1 )
  160. *
  161. TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
  162. DSIGMA = D( 1 ) + TAU
  163. DELTA( 1 ) = -TAU
  164. DELTA( 2 ) = DEL - TAU
  165. WORK( 1 ) = TWO*D( 1 ) + TAU
  166. WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
  167. * DELTA( 1 ) = -Z( 1 ) / TAU
  168. * DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
  169. ELSE
  170. B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
  171. C = RHO*Z( 2 )*Z( 2 )*DELSQ
  172. *
  173. * The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
  174. *
  175. IF( B.GT.ZERO ) THEN
  176. TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
  177. ELSE
  178. TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
  179. END IF
  180. *
  181. * The following TAU is DSIGMA - D( 2 )
  182. *
  183. TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
  184. DSIGMA = D( 2 ) + TAU
  185. DELTA( 1 ) = -( DEL+TAU )
  186. DELTA( 2 ) = -TAU
  187. WORK( 1 ) = D( 1 ) + TAU + D( 2 )
  188. WORK( 2 ) = TWO*D( 2 ) + TAU
  189. * DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
  190. * DELTA( 2 ) = -Z( 2 ) / TAU
  191. END IF
  192. * TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
  193. * DELTA( 1 ) = DELTA( 1 ) / TEMP
  194. * DELTA( 2 ) = DELTA( 2 ) / TEMP
  195. ELSE
  196. *
  197. * Now I=2
  198. *
  199. B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
  200. C = RHO*Z( 2 )*Z( 2 )*DELSQ
  201. *
  202. * The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
  203. *
  204. IF( B.GT.ZERO ) THEN
  205. TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
  206. ELSE
  207. TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
  208. END IF
  209. *
  210. * The following TAU is DSIGMA - D( 2 )
  211. *
  212. TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
  213. DSIGMA = D( 2 ) + TAU
  214. DELTA( 1 ) = -( DEL+TAU )
  215. DELTA( 2 ) = -TAU
  216. WORK( 1 ) = D( 1 ) + TAU + D( 2 )
  217. WORK( 2 ) = TWO*D( 2 ) + TAU
  218. * DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
  219. * DELTA( 2 ) = -Z( 2 ) / TAU
  220. * TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
  221. * DELTA( 1 ) = DELTA( 1 ) / TEMP
  222. * DELTA( 2 ) = DELTA( 2 ) / TEMP
  223. END IF
  224. RETURN
  225. *
  226. * End of SLASD5
  227. *
  228. END