|
- *> \brief \b DSYEQUB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYEQUB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyequb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyequb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyequb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, N
- * DOUBLE PRECISION AMAX, SCOND
- * CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYEQUB computes row and column scalings intended to equilibrate a
- *> symmetric matrix A (with respect to the Euclidean norm) and reduce
- *> its condition number. The scale factors S are computed by the BIN
- *> algorithm (see references) so that the scaled matrix B with elements
- *> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
- *> the smallest possible condition number over all possible diagonal
- *> scalings.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The N-by-N symmetric matrix whose scaling factors are to be
- *> computed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, S contains the scale factors for A.
- *> \endverbatim
- *>
- *> \param[out] SCOND
- *> \verbatim
- *> SCOND is DOUBLE PRECISION
- *> If INFO = 0, S contains the ratio of the smallest S(i) to
- *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
- *> large nor too small, it is not worth scaling by S.
- *> \endverbatim
- *>
- *> \param[out] AMAX
- *> \verbatim
- *> AMAX is DOUBLE PRECISION
- *> Largest absolute value of any matrix element. If AMAX is
- *> very close to overflow or very close to underflow, the
- *> matrix should be scaled.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleSYcomputational
- *
- *> \par References:
- * ================
- *>
- *> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
- *> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
- *> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
- *> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
- *>
- * =====================================================================
- SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, N
- DOUBLE PRECISION AMAX, SCOND
- CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
- INTEGER MAX_ITER
- PARAMETER ( MAX_ITER = 100 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, ITER
- DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
- $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
- LOGICAL UP
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- LOGICAL LSAME
- EXTERNAL DLAMCH, LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASSQ, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -1
- ELSE IF ( N .LT. 0 ) THEN
- INFO = -2
- ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF ( INFO .NE. 0 ) THEN
- CALL XERBLA( 'DSYEQUB', -INFO )
- RETURN
- END IF
-
- UP = LSAME( UPLO, 'U' )
- AMAX = ZERO
- *
- * Quick return if possible.
- *
- IF ( N .EQ. 0 ) THEN
- SCOND = ONE
- RETURN
- END IF
-
- DO I = 1, N
- S( I ) = ZERO
- END DO
-
- AMAX = ZERO
- IF ( UP ) THEN
- DO J = 1, N
- DO I = 1, J-1
- S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
- S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
- AMAX = MAX( AMAX, ABS( A( I, J ) ) )
- END DO
- S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
- AMAX = MAX( AMAX, ABS( A( J, J ) ) )
- END DO
- ELSE
- DO J = 1, N
- S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
- AMAX = MAX( AMAX, ABS( A( J, J ) ) )
- DO I = J+1, N
- S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
- S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
- AMAX = MAX( AMAX, ABS( A( I, J ) ) )
- END DO
- END DO
- END IF
- DO J = 1, N
- S( J ) = 1.0D0 / S( J )
- END DO
-
- TOL = ONE / SQRT( 2.0D0 * N )
-
- DO ITER = 1, MAX_ITER
- SCALE = 0.0D0
- SUMSQ = 0.0D0
- * beta = |A|s
- DO I = 1, N
- WORK( I ) = ZERO
- END DO
- IF ( UP ) THEN
- DO J = 1, N
- DO I = 1, J-1
- WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
- WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
- END DO
- WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
- END DO
- ELSE
- DO J = 1, N
- WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
- DO I = J+1, N
- WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
- WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
- END DO
- END DO
- END IF
-
- * avg = s^T beta / n
- AVG = 0.0D0
- DO I = 1, N
- AVG = AVG + S( I )*WORK( I )
- END DO
- AVG = AVG / N
-
- STD = 0.0D0
- DO I = N+1, 2*N
- WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
- END DO
- CALL DLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
- STD = SCALE * SQRT( SUMSQ / N )
-
- IF ( STD .LT. TOL * AVG ) GOTO 999
-
- DO I = 1, N
- T = ABS( A( I, I ) )
- SI = S( I )
- C2 = ( N-1 ) * T
- C1 = ( N-2 ) * ( WORK( I ) - T*SI )
- C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
- D = C1*C1 - 4*C0*C2
-
- IF ( D .LE. 0 ) THEN
- INFO = -1
- RETURN
- END IF
- SI = -2*C0 / ( C1 + SQRT( D ) )
-
- D = SI - S( I )
- U = ZERO
- IF ( UP ) THEN
- DO J = 1, I
- T = ABS( A( J, I ) )
- U = U + S( J )*T
- WORK( J ) = WORK( J ) + D*T
- END DO
- DO J = I+1,N
- T = ABS( A( I, J ) )
- U = U + S( J )*T
- WORK( J ) = WORK( J ) + D*T
- END DO
- ELSE
- DO J = 1, I
- T = ABS( A( I, J ) )
- U = U + S( J )*T
- WORK( J ) = WORK( J ) + D*T
- END DO
- DO J = I+1,N
- T = ABS( A( J, I ) )
- U = U + S( J )*T
- WORK( J ) = WORK( J ) + D*T
- END DO
- END IF
-
- AVG = AVG + ( U + WORK( I ) ) * D / N
- S( I ) = SI
- END DO
- END DO
-
- 999 CONTINUE
-
- SMLNUM = DLAMCH( 'SAFEMIN' )
- BIGNUM = ONE / SMLNUM
- SMIN = BIGNUM
- SMAX = ZERO
- T = ONE / SQRT( AVG )
- BASE = DLAMCH( 'B' )
- U = ONE / LOG( BASE )
- DO I = 1, N
- S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
- SMIN = MIN( SMIN, S( I ) )
- SMAX = MAX( SMAX, S( I ) )
- END DO
- SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
- *
- END
|