You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsyequb.f 9.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. *> \brief \b DSYEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * DOUBLE PRECISION AMAX, SCOND
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSYEQUB computes row and column scalings intended to equilibrate a
  39. *> symmetric matrix A (with respect to the Euclidean norm) and reduce
  40. *> its condition number. The scale factors S are computed by the BIN
  41. *> algorithm (see references) so that the scaled matrix B with elements
  42. *> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
  43. *> the smallest possible condition number over all possible diagonal
  44. *> scalings.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': Upper triangle of A is stored;
  54. *> = 'L': Lower triangle of A is stored.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] A
  64. *> \verbatim
  65. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  66. *> The N-by-N symmetric matrix whose scaling factors are to be
  67. *> computed.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDA
  71. *> \verbatim
  72. *> LDA is INTEGER
  73. *> The leading dimension of the array A. LDA >= max(1,N).
  74. *> \endverbatim
  75. *>
  76. *> \param[out] S
  77. *> \verbatim
  78. *> S is DOUBLE PRECISION array, dimension (N)
  79. *> If INFO = 0, S contains the scale factors for A.
  80. *> \endverbatim
  81. *>
  82. *> \param[out] SCOND
  83. *> \verbatim
  84. *> SCOND is DOUBLE PRECISION
  85. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  86. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  87. *> large nor too small, it is not worth scaling by S.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] AMAX
  91. *> \verbatim
  92. *> AMAX is DOUBLE PRECISION
  93. *> Largest absolute value of any matrix element. If AMAX is
  94. *> very close to overflow or very close to underflow, the
  95. *> matrix should be scaled.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] WORK
  99. *> \verbatim
  100. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  101. *> \endverbatim
  102. *>
  103. *> \param[out] INFO
  104. *> \verbatim
  105. *> INFO is INTEGER
  106. *> = 0: successful exit
  107. *> < 0: if INFO = -i, the i-th argument had an illegal value
  108. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \ingroup doubleSYcomputational
  120. *
  121. *> \par References:
  122. * ================
  123. *>
  124. *> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  125. *> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  126. *> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  127. *> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
  128. *>
  129. * =====================================================================
  130. SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  131. *
  132. * -- LAPACK computational routine --
  133. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  134. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135. *
  136. * .. Scalar Arguments ..
  137. INTEGER INFO, LDA, N
  138. DOUBLE PRECISION AMAX, SCOND
  139. CHARACTER UPLO
  140. * ..
  141. * .. Array Arguments ..
  142. DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
  143. * ..
  144. *
  145. * =====================================================================
  146. *
  147. * .. Parameters ..
  148. DOUBLE PRECISION ONE, ZERO
  149. PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
  150. INTEGER MAX_ITER
  151. PARAMETER ( MAX_ITER = 100 )
  152. * ..
  153. * .. Local Scalars ..
  154. INTEGER I, J, ITER
  155. DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  156. $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  157. LOGICAL UP
  158. * ..
  159. * .. External Functions ..
  160. DOUBLE PRECISION DLAMCH
  161. LOGICAL LSAME
  162. EXTERNAL DLAMCH, LSAME
  163. * ..
  164. * .. External Subroutines ..
  165. EXTERNAL DLASSQ, XERBLA
  166. * ..
  167. * .. Intrinsic Functions ..
  168. INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
  169. * ..
  170. * .. Executable Statements ..
  171. *
  172. * Test the input parameters.
  173. *
  174. INFO = 0
  175. IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  176. INFO = -1
  177. ELSE IF ( N .LT. 0 ) THEN
  178. INFO = -2
  179. ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  180. INFO = -4
  181. END IF
  182. IF ( INFO .NE. 0 ) THEN
  183. CALL XERBLA( 'DSYEQUB', -INFO )
  184. RETURN
  185. END IF
  186. UP = LSAME( UPLO, 'U' )
  187. AMAX = ZERO
  188. *
  189. * Quick return if possible.
  190. *
  191. IF ( N .EQ. 0 ) THEN
  192. SCOND = ONE
  193. RETURN
  194. END IF
  195. DO I = 1, N
  196. S( I ) = ZERO
  197. END DO
  198. AMAX = ZERO
  199. IF ( UP ) THEN
  200. DO J = 1, N
  201. DO I = 1, J-1
  202. S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
  203. S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
  204. AMAX = MAX( AMAX, ABS( A( I, J ) ) )
  205. END DO
  206. S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
  207. AMAX = MAX( AMAX, ABS( A( J, J ) ) )
  208. END DO
  209. ELSE
  210. DO J = 1, N
  211. S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
  212. AMAX = MAX( AMAX, ABS( A( J, J ) ) )
  213. DO I = J+1, N
  214. S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
  215. S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
  216. AMAX = MAX( AMAX, ABS( A( I, J ) ) )
  217. END DO
  218. END DO
  219. END IF
  220. DO J = 1, N
  221. S( J ) = 1.0D0 / S( J )
  222. END DO
  223. TOL = ONE / SQRT( 2.0D0 * N )
  224. DO ITER = 1, MAX_ITER
  225. SCALE = 0.0D0
  226. SUMSQ = 0.0D0
  227. * beta = |A|s
  228. DO I = 1, N
  229. WORK( I ) = ZERO
  230. END DO
  231. IF ( UP ) THEN
  232. DO J = 1, N
  233. DO I = 1, J-1
  234. WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
  235. WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
  236. END DO
  237. WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
  238. END DO
  239. ELSE
  240. DO J = 1, N
  241. WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
  242. DO I = J+1, N
  243. WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
  244. WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
  245. END DO
  246. END DO
  247. END IF
  248. * avg = s^T beta / n
  249. AVG = 0.0D0
  250. DO I = 1, N
  251. AVG = AVG + S( I )*WORK( I )
  252. END DO
  253. AVG = AVG / N
  254. STD = 0.0D0
  255. DO I = N+1, 2*N
  256. WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  257. END DO
  258. CALL DLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  259. STD = SCALE * SQRT( SUMSQ / N )
  260. IF ( STD .LT. TOL * AVG ) GOTO 999
  261. DO I = 1, N
  262. T = ABS( A( I, I ) )
  263. SI = S( I )
  264. C2 = ( N-1 ) * T
  265. C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  266. C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  267. D = C1*C1 - 4*C0*C2
  268. IF ( D .LE. 0 ) THEN
  269. INFO = -1
  270. RETURN
  271. END IF
  272. SI = -2*C0 / ( C1 + SQRT( D ) )
  273. D = SI - S( I )
  274. U = ZERO
  275. IF ( UP ) THEN
  276. DO J = 1, I
  277. T = ABS( A( J, I ) )
  278. U = U + S( J )*T
  279. WORK( J ) = WORK( J ) + D*T
  280. END DO
  281. DO J = I+1,N
  282. T = ABS( A( I, J ) )
  283. U = U + S( J )*T
  284. WORK( J ) = WORK( J ) + D*T
  285. END DO
  286. ELSE
  287. DO J = 1, I
  288. T = ABS( A( I, J ) )
  289. U = U + S( J )*T
  290. WORK( J ) = WORK( J ) + D*T
  291. END DO
  292. DO J = I+1,N
  293. T = ABS( A( J, I ) )
  294. U = U + S( J )*T
  295. WORK( J ) = WORK( J ) + D*T
  296. END DO
  297. END IF
  298. AVG = AVG + ( U + WORK( I ) ) * D / N
  299. S( I ) = SI
  300. END DO
  301. END DO
  302. 999 CONTINUE
  303. SMLNUM = DLAMCH( 'SAFEMIN' )
  304. BIGNUM = ONE / SMLNUM
  305. SMIN = BIGNUM
  306. SMAX = ZERO
  307. T = ONE / SQRT( AVG )
  308. BASE = DLAMCH( 'B' )
  309. U = ONE / LOG( BASE )
  310. DO I = 1, N
  311. S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  312. SMIN = MIN( SMIN, S( I ) )
  313. SMAX = MAX( SMAX, S( I ) )
  314. END DO
  315. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  316. *
  317. END