|
- *> \brief \b STZRQF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download STZRQF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stzrqf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stzrqf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stzrqf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STZRQF( M, N, A, LDA, TAU, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), TAU( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine STZRZF.
- *>
- *> STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
- *> to upper triangular form by means of orthogonal transformations.
- *>
- *> The upper trapezoidal matrix A is factored as
- *>
- *> A = ( R 0 ) * Z,
- *>
- *> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
- *> triangular matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= M.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the leading M-by-N upper trapezoidal part of the
- *> array A must contain the matrix to be factorized.
- *> On exit, the leading M-by-M upper triangular part of A
- *> contains the upper triangular matrix R, and elements M+1 to
- *> N of the first M rows of A, with the array TAU, represent the
- *> orthogonal matrix Z as a product of M elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (M)
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The factorization is obtained by Householder's method. The kth
- *> transformation matrix, Z( k ), which is used to introduce zeros into
- *> the ( m - k + 1 )th row of A, is given in the form
- *>
- *> Z( k ) = ( I 0 ),
- *> ( 0 T( k ) )
- *>
- *> where
- *>
- *> T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ),
- *> ( 0 )
- *> ( z( k ) )
- *>
- *> tau is a scalar and z( k ) is an ( n - m ) element vector.
- *> tau and z( k ) are chosen to annihilate the elements of the kth row
- *> of X.
- *>
- *> The scalar tau is returned in the kth element of TAU and the vector
- *> u( k ) in the kth row of A, such that the elements of z( k ) are
- *> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
- *> the upper triangular part of A.
- *>
- *> Z is given by
- *>
- *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE STZRQF( M, N, A, LDA, TAU, INFO )
- *
- * -- LAPACK computational routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), TAU( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, K, M1
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, SGEMV, SGER, SLARFG, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.M ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'STZRQF', -INFO )
- RETURN
- END IF
- *
- * Perform the factorization.
- *
- IF( M.EQ.0 )
- $ RETURN
- IF( M.EQ.N ) THEN
- DO 10 I = 1, N
- TAU( I ) = ZERO
- 10 CONTINUE
- ELSE
- M1 = MIN( M+1, N )
- DO 20 K = M, 1, -1
- *
- * Use a Householder reflection to zero the kth row of A.
- * First set up the reflection.
- *
- CALL SLARFG( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
- *
- IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
- *
- * We now perform the operation A := A*P( k ).
- *
- * Use the first ( k - 1 ) elements of TAU to store a( k ),
- * where a( k ) consists of the first ( k - 1 ) elements of
- * the kth column of A. Also let B denote the first
- * ( k - 1 ) rows of the last ( n - m ) columns of A.
- *
- CALL SCOPY( K-1, A( 1, K ), 1, TAU, 1 )
- *
- * Form w = a( k ) + B*z( k ) in TAU.
- *
- CALL SGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
- $ LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
- *
- * Now form a( k ) := a( k ) - tau*w
- * and B := B - tau*w*z( k )**T.
- *
- CALL SAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
- CALL SGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
- $ A( 1, M1 ), LDA )
- END IF
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of STZRQF
- *
- END
|