You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stzrqf.f 6.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. *> \brief \b STZRQF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download STZRQF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stzrqf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stzrqf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stzrqf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE STZRQF( M, N, A, LDA, TAU, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * REAL A( LDA, * ), TAU( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> This routine is deprecated and has been replaced by routine STZRZF.
  37. *>
  38. *> STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
  39. *> to upper triangular form by means of orthogonal transformations.
  40. *>
  41. *> The upper trapezoidal matrix A is factored as
  42. *>
  43. *> A = ( R 0 ) * Z,
  44. *>
  45. *> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
  46. *> triangular matrix.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of rows of the matrix A. M >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of columns of the matrix A. N >= M.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is REAL array, dimension (LDA,N)
  67. *> On entry, the leading M-by-N upper trapezoidal part of the
  68. *> array A must contain the matrix to be factorized.
  69. *> On exit, the leading M-by-M upper triangular part of A
  70. *> contains the upper triangular matrix R, and elements M+1 to
  71. *> N of the first M rows of A, with the array TAU, represent the
  72. *> orthogonal matrix Z as a product of M elementary reflectors.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,M).
  79. *> \endverbatim
  80. *>
  81. *> \param[out] TAU
  82. *> \verbatim
  83. *> TAU is REAL array, dimension (M)
  84. *> The scalar factors of the elementary reflectors.
  85. *> \endverbatim
  86. *>
  87. *> \param[out] INFO
  88. *> \verbatim
  89. *> INFO is INTEGER
  90. *> = 0: successful exit
  91. *> < 0: if INFO = -i, the i-th argument had an illegal value
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \date November 2011
  103. *
  104. *> \ingroup realOTHERcomputational
  105. *
  106. *> \par Further Details:
  107. * =====================
  108. *>
  109. *> \verbatim
  110. *>
  111. *> The factorization is obtained by Householder's method. The kth
  112. *> transformation matrix, Z( k ), which is used to introduce zeros into
  113. *> the ( m - k + 1 )th row of A, is given in the form
  114. *>
  115. *> Z( k ) = ( I 0 ),
  116. *> ( 0 T( k ) )
  117. *>
  118. *> where
  119. *>
  120. *> T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ),
  121. *> ( 0 )
  122. *> ( z( k ) )
  123. *>
  124. *> tau is a scalar and z( k ) is an ( n - m ) element vector.
  125. *> tau and z( k ) are chosen to annihilate the elements of the kth row
  126. *> of X.
  127. *>
  128. *> The scalar tau is returned in the kth element of TAU and the vector
  129. *> u( k ) in the kth row of A, such that the elements of z( k ) are
  130. *> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
  131. *> the upper triangular part of A.
  132. *>
  133. *> Z is given by
  134. *>
  135. *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
  136. *> \endverbatim
  137. *>
  138. * =====================================================================
  139. SUBROUTINE STZRQF( M, N, A, LDA, TAU, INFO )
  140. *
  141. * -- LAPACK computational routine (version 3.4.0) --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. * November 2011
  145. *
  146. * .. Scalar Arguments ..
  147. INTEGER INFO, LDA, M, N
  148. * ..
  149. * .. Array Arguments ..
  150. REAL A( LDA, * ), TAU( * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * .. Parameters ..
  156. REAL ONE, ZERO
  157. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  158. * ..
  159. * .. Local Scalars ..
  160. INTEGER I, K, M1
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC MAX, MIN
  164. * ..
  165. * .. External Subroutines ..
  166. EXTERNAL SAXPY, SCOPY, SGEMV, SGER, SLARFG, XERBLA
  167. * ..
  168. * .. Executable Statements ..
  169. *
  170. * Test the input parameters.
  171. *
  172. INFO = 0
  173. IF( M.LT.0 ) THEN
  174. INFO = -1
  175. ELSE IF( N.LT.M ) THEN
  176. INFO = -2
  177. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  178. INFO = -4
  179. END IF
  180. IF( INFO.NE.0 ) THEN
  181. CALL XERBLA( 'STZRQF', -INFO )
  182. RETURN
  183. END IF
  184. *
  185. * Perform the factorization.
  186. *
  187. IF( M.EQ.0 )
  188. $ RETURN
  189. IF( M.EQ.N ) THEN
  190. DO 10 I = 1, N
  191. TAU( I ) = ZERO
  192. 10 CONTINUE
  193. ELSE
  194. M1 = MIN( M+1, N )
  195. DO 20 K = M, 1, -1
  196. *
  197. * Use a Householder reflection to zero the kth row of A.
  198. * First set up the reflection.
  199. *
  200. CALL SLARFG( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
  201. *
  202. IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
  203. *
  204. * We now perform the operation A := A*P( k ).
  205. *
  206. * Use the first ( k - 1 ) elements of TAU to store a( k ),
  207. * where a( k ) consists of the first ( k - 1 ) elements of
  208. * the kth column of A. Also let B denote the first
  209. * ( k - 1 ) rows of the last ( n - m ) columns of A.
  210. *
  211. CALL SCOPY( K-1, A( 1, K ), 1, TAU, 1 )
  212. *
  213. * Form w = a( k ) + B*z( k ) in TAU.
  214. *
  215. CALL SGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
  216. $ LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
  217. *
  218. * Now form a( k ) := a( k ) - tau*w
  219. * and B := B - tau*w*z( k )**T.
  220. *
  221. CALL SAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
  222. CALL SGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
  223. $ A( 1, M1 ), LDA )
  224. END IF
  225. 20 CONTINUE
  226. END IF
  227. *
  228. RETURN
  229. *
  230. * End of STZRQF
  231. *
  232. END