|
- *> \brief \b ZSYTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZSYTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSYTRF computes the factorization of a complex symmetric matrix A
- *> using the Bunch-Kaufman diagonal pivoting method. The form of the
- *> factorization is
- *>
- *> A = U*D*U**T or A = L*D*L**T
- *>
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, and D is symmetric and block diagonal with
- *> 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> This is the blocked version of the algorithm, calling Level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, the block diagonal matrix D and the multipliers used
- *> to obtain the factor U or L (see below for further details).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D.
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
- *> interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
- *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
- *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
- *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
- *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK >=1. For best performance
- *> LWORK >= N*NB, where NB is the block size returned by ILAENV.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
- *> has been completed, but the block diagonal matrix D is
- *> exactly singular, and division by zero will occur if it
- *> is used to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16SYcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> If UPLO = 'U', then A = U*D*U**T, where
- *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
- *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
- *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
- *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
- *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
- *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
- *>
- *> ( I v 0 ) k-s
- *> U(k) = ( 0 I 0 ) s
- *> ( 0 0 I ) n-k
- *> k-s s n-k
- *>
- *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
- *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
- *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
- *>
- *> If UPLO = 'L', then A = L*D*L**T, where
- *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
- *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
- *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
- *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
- *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
- *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
- *>
- *> ( I 0 0 ) k-1
- *> L(k) = ( 0 I 0 ) s
- *> ( 0 v I ) n-k-s+1
- *> k-1 s n-k-s+1
- *>
- *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
- *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
- *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER
- INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZLASYF, ZSYTF2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -7
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- *
- * Determine the block size
- *
- NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSYTRF', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- NBMIN = 2
- LDWORK = N
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- NB = MAX( LWORK / LDWORK, 1 )
- NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF', UPLO, N, -1, -1, -1 ) )
- END IF
- ELSE
- IWS = 1
- END IF
- IF( NB.LT.NBMIN )
- $ NB = N
- *
- IF( UPPER ) THEN
- *
- * Factorize A as U*D*U**T using the upper triangle of A
- *
- * K is the main loop index, decreasing from N to 1 in steps of
- * KB, where KB is the number of columns factorized by ZLASYF;
- * KB is either NB or NB-1, or K for the last block
- *
- K = N
- 10 CONTINUE
- *
- * If K < 1, exit from loop
- *
- IF( K.LT.1 )
- $ GO TO 40
- *
- IF( K.GT.NB ) THEN
- *
- * Factorize columns k-kb+1:k of A and use blocked code to
- * update columns 1:k-kb
- *
- CALL ZLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
- ELSE
- *
- * Use unblocked code to factorize columns 1:k of A
- *
- CALL ZSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
- KB = K
- END IF
- *
- * Set INFO on the first occurrence of a zero pivot
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO
- *
- * Decrease K and return to the start of the main loop
- *
- K = K - KB
- GO TO 10
- *
- ELSE
- *
- * Factorize A as L*D*L**T using the lower triangle of A
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * KB, where KB is the number of columns factorized by ZLASYF;
- * KB is either NB or NB-1, or N-K+1 for the last block
- *
- K = 1
- 20 CONTINUE
- *
- * If K > N, exit from loop
- *
- IF( K.GT.N )
- $ GO TO 40
- *
- IF( K.LE.N-NB ) THEN
- *
- * Factorize columns k:k+kb-1 of A and use blocked code to
- * update columns k+kb:n
- *
- CALL ZLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
- $ WORK, N, IINFO )
- ELSE
- *
- * Use unblocked code to factorize columns k:n of A
- *
- CALL ZSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
- KB = N - K + 1
- END IF
- *
- * Set INFO on the first occurrence of a zero pivot
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + K - 1
- *
- * Adjust IPIV
- *
- DO 30 J = K, K + KB - 1
- IF( IPIV( J ).GT.0 ) THEN
- IPIV( J ) = IPIV( J ) + K - 1
- ELSE
- IPIV( J ) = IPIV( J ) - K + 1
- END IF
- 30 CONTINUE
- *
- * Increase K and return to the start of the main loop
- *
- K = K + KB
- GO TO 20
- *
- END IF
- *
- 40 CONTINUE
- WORK( 1 ) = LWKOPT
- RETURN
- *
- * End of ZSYTRF
- *
- END
|