You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytrf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. *> \brief \b ZSYTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSYTRF computes the factorization of a complex symmetric matrix A
  39. *> using the Bunch-Kaufman diagonal pivoting method. The form of the
  40. *> factorization is
  41. *>
  42. *> A = U*D*U**T or A = L*D*L**T
  43. *>
  44. *> where U (or L) is a product of permutation and unit upper (lower)
  45. *> triangular matrices, and D is symmetric and block diagonal with
  46. *> 1-by-1 and 2-by-2 diagonal blocks.
  47. *>
  48. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> = 'U': Upper triangle of A is stored;
  58. *> = 'L': Lower triangle of A is stored.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is COMPLEX*16 array, dimension (LDA,N)
  70. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  71. *> N-by-N upper triangular part of A contains the upper
  72. *> triangular part of the matrix A, and the strictly lower
  73. *> triangular part of A is not referenced. If UPLO = 'L', the
  74. *> leading N-by-N lower triangular part of A contains the lower
  75. *> triangular part of the matrix A, and the strictly upper
  76. *> triangular part of A is not referenced.
  77. *>
  78. *> On exit, the block diagonal matrix D and the multipliers used
  79. *> to obtain the factor U or L (see below for further details).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the array A. LDA >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] IPIV
  89. *> \verbatim
  90. *> IPIV is INTEGER array, dimension (N)
  91. *> Details of the interchanges and the block structure of D.
  92. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  93. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  94. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  95. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  96. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  97. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  98. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  104. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LWORK
  108. *> \verbatim
  109. *> LWORK is INTEGER
  110. *> The length of WORK. LWORK >=1. For best performance
  111. *> LWORK >= N*NB, where NB is the block size returned by ILAENV.
  112. *>
  113. *> If LWORK = -1, then a workspace query is assumed; the routine
  114. *> only calculates the optimal size of the WORK array, returns
  115. *> this value as the first entry of the WORK array, and no error
  116. *> message related to LWORK is issued by XERBLA.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> = 0: successful exit
  123. *> < 0: if INFO = -i, the i-th argument had an illegal value
  124. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  125. *> has been completed, but the block diagonal matrix D is
  126. *> exactly singular, and division by zero will occur if it
  127. *> is used to solve a system of equations.
  128. *> \endverbatim
  129. *
  130. * Authors:
  131. * ========
  132. *
  133. *> \author Univ. of Tennessee
  134. *> \author Univ. of California Berkeley
  135. *> \author Univ. of Colorado Denver
  136. *> \author NAG Ltd.
  137. *
  138. *> \ingroup complex16SYcomputational
  139. *
  140. *> \par Further Details:
  141. * =====================
  142. *>
  143. *> \verbatim
  144. *>
  145. *> If UPLO = 'U', then A = U*D*U**T, where
  146. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  147. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  148. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  149. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  150. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  151. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  152. *>
  153. *> ( I v 0 ) k-s
  154. *> U(k) = ( 0 I 0 ) s
  155. *> ( 0 0 I ) n-k
  156. *> k-s s n-k
  157. *>
  158. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  159. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  160. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  161. *>
  162. *> If UPLO = 'L', then A = L*D*L**T, where
  163. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  164. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  165. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  166. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  167. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  168. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  169. *>
  170. *> ( I 0 0 ) k-1
  171. *> L(k) = ( 0 I 0 ) s
  172. *> ( 0 v I ) n-k-s+1
  173. *> k-1 s n-k-s+1
  174. *>
  175. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  176. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  177. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  178. *> \endverbatim
  179. *>
  180. * =====================================================================
  181. SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  182. *
  183. * -- LAPACK computational routine --
  184. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  185. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186. *
  187. * .. Scalar Arguments ..
  188. CHARACTER UPLO
  189. INTEGER INFO, LDA, LWORK, N
  190. * ..
  191. * .. Array Arguments ..
  192. INTEGER IPIV( * )
  193. COMPLEX*16 A( LDA, * ), WORK( * )
  194. * ..
  195. *
  196. * =====================================================================
  197. *
  198. * .. Local Scalars ..
  199. LOGICAL LQUERY, UPPER
  200. INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
  201. * ..
  202. * .. External Functions ..
  203. LOGICAL LSAME
  204. INTEGER ILAENV
  205. EXTERNAL LSAME, ILAENV
  206. * ..
  207. * .. External Subroutines ..
  208. EXTERNAL XERBLA, ZLASYF, ZSYTF2
  209. * ..
  210. * .. Intrinsic Functions ..
  211. INTRINSIC MAX
  212. * ..
  213. * .. Executable Statements ..
  214. *
  215. * Test the input parameters.
  216. *
  217. INFO = 0
  218. UPPER = LSAME( UPLO, 'U' )
  219. LQUERY = ( LWORK.EQ.-1 )
  220. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  221. INFO = -1
  222. ELSE IF( N.LT.0 ) THEN
  223. INFO = -2
  224. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  225. INFO = -4
  226. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  227. INFO = -7
  228. END IF
  229. *
  230. IF( INFO.EQ.0 ) THEN
  231. *
  232. * Determine the block size
  233. *
  234. NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
  235. LWKOPT = N*NB
  236. WORK( 1 ) = LWKOPT
  237. END IF
  238. *
  239. IF( INFO.NE.0 ) THEN
  240. CALL XERBLA( 'ZSYTRF', -INFO )
  241. RETURN
  242. ELSE IF( LQUERY ) THEN
  243. RETURN
  244. END IF
  245. *
  246. NBMIN = 2
  247. LDWORK = N
  248. IF( NB.GT.1 .AND. NB.LT.N ) THEN
  249. IWS = LDWORK*NB
  250. IF( LWORK.LT.IWS ) THEN
  251. NB = MAX( LWORK / LDWORK, 1 )
  252. NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF', UPLO, N, -1, -1, -1 ) )
  253. END IF
  254. ELSE
  255. IWS = 1
  256. END IF
  257. IF( NB.LT.NBMIN )
  258. $ NB = N
  259. *
  260. IF( UPPER ) THEN
  261. *
  262. * Factorize A as U*D*U**T using the upper triangle of A
  263. *
  264. * K is the main loop index, decreasing from N to 1 in steps of
  265. * KB, where KB is the number of columns factorized by ZLASYF;
  266. * KB is either NB or NB-1, or K for the last block
  267. *
  268. K = N
  269. 10 CONTINUE
  270. *
  271. * If K < 1, exit from loop
  272. *
  273. IF( K.LT.1 )
  274. $ GO TO 40
  275. *
  276. IF( K.GT.NB ) THEN
  277. *
  278. * Factorize columns k-kb+1:k of A and use blocked code to
  279. * update columns 1:k-kb
  280. *
  281. CALL ZLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
  282. ELSE
  283. *
  284. * Use unblocked code to factorize columns 1:k of A
  285. *
  286. CALL ZSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
  287. KB = K
  288. END IF
  289. *
  290. * Set INFO on the first occurrence of a zero pivot
  291. *
  292. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  293. $ INFO = IINFO
  294. *
  295. * Decrease K and return to the start of the main loop
  296. *
  297. K = K - KB
  298. GO TO 10
  299. *
  300. ELSE
  301. *
  302. * Factorize A as L*D*L**T using the lower triangle of A
  303. *
  304. * K is the main loop index, increasing from 1 to N in steps of
  305. * KB, where KB is the number of columns factorized by ZLASYF;
  306. * KB is either NB or NB-1, or N-K+1 for the last block
  307. *
  308. K = 1
  309. 20 CONTINUE
  310. *
  311. * If K > N, exit from loop
  312. *
  313. IF( K.GT.N )
  314. $ GO TO 40
  315. *
  316. IF( K.LE.N-NB ) THEN
  317. *
  318. * Factorize columns k:k+kb-1 of A and use blocked code to
  319. * update columns k+kb:n
  320. *
  321. CALL ZLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
  322. $ WORK, N, IINFO )
  323. ELSE
  324. *
  325. * Use unblocked code to factorize columns k:n of A
  326. *
  327. CALL ZSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
  328. KB = N - K + 1
  329. END IF
  330. *
  331. * Set INFO on the first occurrence of a zero pivot
  332. *
  333. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  334. $ INFO = IINFO + K - 1
  335. *
  336. * Adjust IPIV
  337. *
  338. DO 30 J = K, K + KB - 1
  339. IF( IPIV( J ).GT.0 ) THEN
  340. IPIV( J ) = IPIV( J ) + K - 1
  341. ELSE
  342. IPIV( J ) = IPIV( J ) - K + 1
  343. END IF
  344. 30 CONTINUE
  345. *
  346. * Increase K and return to the start of the main loop
  347. *
  348. K = K + KB
  349. GO TO 20
  350. *
  351. END IF
  352. *
  353. 40 CONTINUE
  354. WORK( 1 ) = LWKOPT
  355. RETURN
  356. *
  357. * End of ZSYTRF
  358. *
  359. END