|
- *> \brief \b ZPORFS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZPORFS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zporfs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zporfs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zporfs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
- * LDX, FERR, BERR, WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
- * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- * $ WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZPORFS improves the computed solution to a system of linear
- *> equations when the coefficient matrix is Hermitian positive definite,
- *> and provides error bounds and backward error estimates for the
- *> solution.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
- *> upper triangular part of A contains the upper triangular part
- *> of the matrix A, and the strictly lower triangular part of A
- *> is not referenced. If UPLO = 'L', the leading N-by-N lower
- *> triangular part of A contains the lower triangular part of
- *> the matrix A, and the strictly upper triangular part of A is
- *> not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is COMPLEX*16 array, dimension (LDAF,N)
- *> The triangular factor U or L from the Cholesky factorization
- *> A = U**H*U or A = L*L**H, as computed by ZPOTRF.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> The right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,NRHS)
- *> On entry, the solution matrix X, as computed by ZPOTRS.
- *> On exit, the improved solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- *> \par Internal Parameters:
- * =========================
- *>
- *> \verbatim
- *> ITMAX is the maximum number of steps of iterative refinement.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16POcomputational
- *
- * =====================================================================
- SUBROUTINE ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
- $ LDX, FERR, BERR, WORK, RWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
- COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- $ WORK( * ), X( LDX, * )
- * ..
- *
- * ====================================================================
- *
- * .. Parameters ..
- INTEGER ITMAX
- PARAMETER ( ITMAX = 5 )
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION TWO
- PARAMETER ( TWO = 2.0D+0 )
- DOUBLE PRECISION THREE
- PARAMETER ( THREE = 3.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER COUNT, I, J, K, KASE, NZ
- DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
- COMPLEX*16 ZDUM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZAXPY, ZCOPY, ZHEMV, ZLACN2, ZPOTRS
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DIMAG, MAX
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH
- EXTERNAL LSAME, DLAMCH
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -11
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZPORFS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
- DO 10 J = 1, NRHS
- FERR( J ) = ZERO
- BERR( J ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- * NZ = maximum number of nonzero elements in each row of A, plus 1
- *
- NZ = N + 1
- EPS = DLAMCH( 'Epsilon' )
- SAFMIN = DLAMCH( 'Safe minimum' )
- SAFE1 = NZ*SAFMIN
- SAFE2 = SAFE1 / EPS
- *
- * Do for each right hand side
- *
- DO 140 J = 1, NRHS
- *
- COUNT = 1
- LSTRES = THREE
- 20 CONTINUE
- *
- * Loop until stopping criterion is satisfied.
- *
- * Compute residual R = B - A * X
- *
- CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
- CALL ZHEMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
- *
- * Compute componentwise relative backward error from formula
- *
- * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
- *
- * where abs(Z) is the componentwise absolute value of the matrix
- * or vector Z. If the i-th component of the denominator is less
- * than SAFE2, then SAFE1 is added to the i-th components of the
- * numerator and denominator before dividing.
- *
- DO 30 I = 1, N
- RWORK( I ) = CABS1( B( I, J ) )
- 30 CONTINUE
- *
- * Compute abs(A)*abs(X) + abs(B).
- *
- IF( UPPER ) THEN
- DO 50 K = 1, N
- S = ZERO
- XK = CABS1( X( K, J ) )
- DO 40 I = 1, K - 1
- RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
- S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
- 40 CONTINUE
- RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK + S
- 50 CONTINUE
- ELSE
- DO 70 K = 1, N
- S = ZERO
- XK = CABS1( X( K, J ) )
- RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK
- DO 60 I = K + 1, N
- RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
- S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
- 60 CONTINUE
- RWORK( K ) = RWORK( K ) + S
- 70 CONTINUE
- END IF
- S = ZERO
- DO 80 I = 1, N
- IF( RWORK( I ).GT.SAFE2 ) THEN
- S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
- ELSE
- S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
- $ ( RWORK( I )+SAFE1 ) )
- END IF
- 80 CONTINUE
- BERR( J ) = S
- *
- * Test stopping criterion. Continue iterating if
- * 1) The residual BERR(J) is larger than machine epsilon, and
- * 2) BERR(J) decreased by at least a factor of 2 during the
- * last iteration, and
- * 3) At most ITMAX iterations tried.
- *
- IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
- $ COUNT.LE.ITMAX ) THEN
- *
- * Update solution and try again.
- *
- CALL ZPOTRS( UPLO, N, 1, AF, LDAF, WORK, N, INFO )
- CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
- LSTRES = BERR( J )
- COUNT = COUNT + 1
- GO TO 20
- END IF
- *
- * Bound error from formula
- *
- * norm(X - XTRUE) / norm(X) .le. FERR =
- * norm( abs(inv(A))*
- * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
- *
- * where
- * norm(Z) is the magnitude of the largest component of Z
- * inv(A) is the inverse of A
- * abs(Z) is the componentwise absolute value of the matrix or
- * vector Z
- * NZ is the maximum number of nonzeros in any row of A, plus 1
- * EPS is machine epsilon
- *
- * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
- * is incremented by SAFE1 if the i-th component of
- * abs(A)*abs(X) + abs(B) is less than SAFE2.
- *
- * Use ZLACN2 to estimate the infinity-norm of the matrix
- * inv(A) * diag(W),
- * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
- *
- DO 90 I = 1, N
- IF( RWORK( I ).GT.SAFE2 ) THEN
- RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
- ELSE
- RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
- $ SAFE1
- END IF
- 90 CONTINUE
- *
- KASE = 0
- 100 CONTINUE
- CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- *
- * Multiply by diag(W)*inv(A**H).
- *
- CALL ZPOTRS( UPLO, N, 1, AF, LDAF, WORK, N, INFO )
- DO 110 I = 1, N
- WORK( I ) = RWORK( I )*WORK( I )
- 110 CONTINUE
- ELSE IF( KASE.EQ.2 ) THEN
- *
- * Multiply by inv(A)*diag(W).
- *
- DO 120 I = 1, N
- WORK( I ) = RWORK( I )*WORK( I )
- 120 CONTINUE
- CALL ZPOTRS( UPLO, N, 1, AF, LDAF, WORK, N, INFO )
- END IF
- GO TO 100
- END IF
- *
- * Normalize error.
- *
- LSTRES = ZERO
- DO 130 I = 1, N
- LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
- 130 CONTINUE
- IF( LSTRES.NE.ZERO )
- $ FERR( J ) = FERR( J ) / LSTRES
- *
- 140 CONTINUE
- *
- RETURN
- *
- * End of ZPORFS
- *
- END
|