You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zporfs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. *> \brief \b ZPORFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPORFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zporfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zporfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zporfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
  22. * LDX, FERR, BERR, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  30. * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  31. * $ WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZPORFS improves the computed solution to a system of linear
  41. *> equations when the coefficient matrix is Hermitian positive definite,
  42. *> and provides error bounds and backward error estimates for the
  43. *> solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrices B and X. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is COMPLEX*16 array, dimension (LDA,N)
  72. *> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
  73. *> upper triangular part of A contains the upper triangular part
  74. *> of the matrix A, and the strictly lower triangular part of A
  75. *> is not referenced. If UPLO = 'L', the leading N-by-N lower
  76. *> triangular part of A contains the lower triangular part of
  77. *> the matrix A, and the strictly upper triangular part of A is
  78. *> not referenced.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] AF
  88. *> \verbatim
  89. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  90. *> The triangular factor U or L from the Cholesky factorization
  91. *> A = U**H*U or A = L*L**H, as computed by ZPOTRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDAF
  95. *> \verbatim
  96. *> LDAF is INTEGER
  97. *> The leading dimension of the array AF. LDAF >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] B
  101. *> \verbatim
  102. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  103. *> The right hand side matrix B.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDB
  107. *> \verbatim
  108. *> LDB is INTEGER
  109. *> The leading dimension of the array B. LDB >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[in,out] X
  113. *> \verbatim
  114. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  115. *> On entry, the solution matrix X, as computed by ZPOTRS.
  116. *> On exit, the improved solution matrix X.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDX
  120. *> \verbatim
  121. *> LDX is INTEGER
  122. *> The leading dimension of the array X. LDX >= max(1,N).
  123. *> \endverbatim
  124. *>
  125. *> \param[out] FERR
  126. *> \verbatim
  127. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  128. *> The estimated forward error bound for each solution vector
  129. *> X(j) (the j-th column of the solution matrix X).
  130. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  131. *> is an estimated upper bound for the magnitude of the largest
  132. *> element in (X(j) - XTRUE) divided by the magnitude of the
  133. *> largest element in X(j). The estimate is as reliable as
  134. *> the estimate for RCOND, and is almost always a slight
  135. *> overestimate of the true error.
  136. *> \endverbatim
  137. *>
  138. *> \param[out] BERR
  139. *> \verbatim
  140. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  141. *> The componentwise relative backward error of each solution
  142. *> vector X(j) (i.e., the smallest relative change in
  143. *> any element of A or B that makes X(j) an exact solution).
  144. *> \endverbatim
  145. *>
  146. *> \param[out] WORK
  147. *> \verbatim
  148. *> WORK is COMPLEX*16 array, dimension (2*N)
  149. *> \endverbatim
  150. *>
  151. *> \param[out] RWORK
  152. *> \verbatim
  153. *> RWORK is DOUBLE PRECISION array, dimension (N)
  154. *> \endverbatim
  155. *>
  156. *> \param[out] INFO
  157. *> \verbatim
  158. *> INFO is INTEGER
  159. *> = 0: successful exit
  160. *> < 0: if INFO = -i, the i-th argument had an illegal value
  161. *> \endverbatim
  162. *
  163. *> \par Internal Parameters:
  164. * =========================
  165. *>
  166. *> \verbatim
  167. *> ITMAX is the maximum number of steps of iterative refinement.
  168. *> \endverbatim
  169. *
  170. * Authors:
  171. * ========
  172. *
  173. *> \author Univ. of Tennessee
  174. *> \author Univ. of California Berkeley
  175. *> \author Univ. of Colorado Denver
  176. *> \author NAG Ltd.
  177. *
  178. *> \ingroup complex16POcomputational
  179. *
  180. * =====================================================================
  181. SUBROUTINE ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X,
  182. $ LDX, FERR, BERR, WORK, RWORK, INFO )
  183. *
  184. * -- LAPACK computational routine --
  185. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  186. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  187. *
  188. * .. Scalar Arguments ..
  189. CHARACTER UPLO
  190. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  191. * ..
  192. * .. Array Arguments ..
  193. DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  194. COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  195. $ WORK( * ), X( LDX, * )
  196. * ..
  197. *
  198. * ====================================================================
  199. *
  200. * .. Parameters ..
  201. INTEGER ITMAX
  202. PARAMETER ( ITMAX = 5 )
  203. DOUBLE PRECISION ZERO
  204. PARAMETER ( ZERO = 0.0D+0 )
  205. COMPLEX*16 ONE
  206. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  207. DOUBLE PRECISION TWO
  208. PARAMETER ( TWO = 2.0D+0 )
  209. DOUBLE PRECISION THREE
  210. PARAMETER ( THREE = 3.0D+0 )
  211. * ..
  212. * .. Local Scalars ..
  213. LOGICAL UPPER
  214. INTEGER COUNT, I, J, K, KASE, NZ
  215. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  216. COMPLEX*16 ZDUM
  217. * ..
  218. * .. Local Arrays ..
  219. INTEGER ISAVE( 3 )
  220. * ..
  221. * .. External Subroutines ..
  222. EXTERNAL XERBLA, ZAXPY, ZCOPY, ZHEMV, ZLACN2, ZPOTRS
  223. * ..
  224. * .. Intrinsic Functions ..
  225. INTRINSIC ABS, DBLE, DIMAG, MAX
  226. * ..
  227. * .. External Functions ..
  228. LOGICAL LSAME
  229. DOUBLE PRECISION DLAMCH
  230. EXTERNAL LSAME, DLAMCH
  231. * ..
  232. * .. Statement Functions ..
  233. DOUBLE PRECISION CABS1
  234. * ..
  235. * .. Statement Function definitions ..
  236. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  237. * ..
  238. * .. Executable Statements ..
  239. *
  240. * Test the input parameters.
  241. *
  242. INFO = 0
  243. UPPER = LSAME( UPLO, 'U' )
  244. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  245. INFO = -1
  246. ELSE IF( N.LT.0 ) THEN
  247. INFO = -2
  248. ELSE IF( NRHS.LT.0 ) THEN
  249. INFO = -3
  250. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  251. INFO = -5
  252. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  253. INFO = -7
  254. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  255. INFO = -9
  256. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  257. INFO = -11
  258. END IF
  259. IF( INFO.NE.0 ) THEN
  260. CALL XERBLA( 'ZPORFS', -INFO )
  261. RETURN
  262. END IF
  263. *
  264. * Quick return if possible
  265. *
  266. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  267. DO 10 J = 1, NRHS
  268. FERR( J ) = ZERO
  269. BERR( J ) = ZERO
  270. 10 CONTINUE
  271. RETURN
  272. END IF
  273. *
  274. * NZ = maximum number of nonzero elements in each row of A, plus 1
  275. *
  276. NZ = N + 1
  277. EPS = DLAMCH( 'Epsilon' )
  278. SAFMIN = DLAMCH( 'Safe minimum' )
  279. SAFE1 = NZ*SAFMIN
  280. SAFE2 = SAFE1 / EPS
  281. *
  282. * Do for each right hand side
  283. *
  284. DO 140 J = 1, NRHS
  285. *
  286. COUNT = 1
  287. LSTRES = THREE
  288. 20 CONTINUE
  289. *
  290. * Loop until stopping criterion is satisfied.
  291. *
  292. * Compute residual R = B - A * X
  293. *
  294. CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  295. CALL ZHEMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
  296. *
  297. * Compute componentwise relative backward error from formula
  298. *
  299. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  300. *
  301. * where abs(Z) is the componentwise absolute value of the matrix
  302. * or vector Z. If the i-th component of the denominator is less
  303. * than SAFE2, then SAFE1 is added to the i-th components of the
  304. * numerator and denominator before dividing.
  305. *
  306. DO 30 I = 1, N
  307. RWORK( I ) = CABS1( B( I, J ) )
  308. 30 CONTINUE
  309. *
  310. * Compute abs(A)*abs(X) + abs(B).
  311. *
  312. IF( UPPER ) THEN
  313. DO 50 K = 1, N
  314. S = ZERO
  315. XK = CABS1( X( K, J ) )
  316. DO 40 I = 1, K - 1
  317. RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  318. S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  319. 40 CONTINUE
  320. RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK + S
  321. 50 CONTINUE
  322. ELSE
  323. DO 70 K = 1, N
  324. S = ZERO
  325. XK = CABS1( X( K, J ) )
  326. RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK
  327. DO 60 I = K + 1, N
  328. RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  329. S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  330. 60 CONTINUE
  331. RWORK( K ) = RWORK( K ) + S
  332. 70 CONTINUE
  333. END IF
  334. S = ZERO
  335. DO 80 I = 1, N
  336. IF( RWORK( I ).GT.SAFE2 ) THEN
  337. S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  338. ELSE
  339. S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  340. $ ( RWORK( I )+SAFE1 ) )
  341. END IF
  342. 80 CONTINUE
  343. BERR( J ) = S
  344. *
  345. * Test stopping criterion. Continue iterating if
  346. * 1) The residual BERR(J) is larger than machine epsilon, and
  347. * 2) BERR(J) decreased by at least a factor of 2 during the
  348. * last iteration, and
  349. * 3) At most ITMAX iterations tried.
  350. *
  351. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  352. $ COUNT.LE.ITMAX ) THEN
  353. *
  354. * Update solution and try again.
  355. *
  356. CALL ZPOTRS( UPLO, N, 1, AF, LDAF, WORK, N, INFO )
  357. CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  358. LSTRES = BERR( J )
  359. COUNT = COUNT + 1
  360. GO TO 20
  361. END IF
  362. *
  363. * Bound error from formula
  364. *
  365. * norm(X - XTRUE) / norm(X) .le. FERR =
  366. * norm( abs(inv(A))*
  367. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  368. *
  369. * where
  370. * norm(Z) is the magnitude of the largest component of Z
  371. * inv(A) is the inverse of A
  372. * abs(Z) is the componentwise absolute value of the matrix or
  373. * vector Z
  374. * NZ is the maximum number of nonzeros in any row of A, plus 1
  375. * EPS is machine epsilon
  376. *
  377. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  378. * is incremented by SAFE1 if the i-th component of
  379. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  380. *
  381. * Use ZLACN2 to estimate the infinity-norm of the matrix
  382. * inv(A) * diag(W),
  383. * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  384. *
  385. DO 90 I = 1, N
  386. IF( RWORK( I ).GT.SAFE2 ) THEN
  387. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  388. ELSE
  389. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  390. $ SAFE1
  391. END IF
  392. 90 CONTINUE
  393. *
  394. KASE = 0
  395. 100 CONTINUE
  396. CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  397. IF( KASE.NE.0 ) THEN
  398. IF( KASE.EQ.1 ) THEN
  399. *
  400. * Multiply by diag(W)*inv(A**H).
  401. *
  402. CALL ZPOTRS( UPLO, N, 1, AF, LDAF, WORK, N, INFO )
  403. DO 110 I = 1, N
  404. WORK( I ) = RWORK( I )*WORK( I )
  405. 110 CONTINUE
  406. ELSE IF( KASE.EQ.2 ) THEN
  407. *
  408. * Multiply by inv(A)*diag(W).
  409. *
  410. DO 120 I = 1, N
  411. WORK( I ) = RWORK( I )*WORK( I )
  412. 120 CONTINUE
  413. CALL ZPOTRS( UPLO, N, 1, AF, LDAF, WORK, N, INFO )
  414. END IF
  415. GO TO 100
  416. END IF
  417. *
  418. * Normalize error.
  419. *
  420. LSTRES = ZERO
  421. DO 130 I = 1, N
  422. LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  423. 130 CONTINUE
  424. IF( LSTRES.NE.ZERO )
  425. $ FERR( J ) = FERR( J ) / LSTRES
  426. *
  427. 140 CONTINUE
  428. *
  429. RETURN
  430. *
  431. * End of ZPORFS
  432. *
  433. END