|
- *> \brief \b CGTRFS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGTRFS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtrfs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtrfs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtrfs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
- * IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER INFO, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL BERR( * ), FERR( * ), RWORK( * )
- * COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ),
- * $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
- * $ WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGTRFS improves the computed solution to a system of linear
- *> equations when the coefficient matrix is tridiagonal, and provides
- *> error bounds and backward error estimates for the solution.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] DL
- *> \verbatim
- *> DL is COMPLEX array, dimension (N-1)
- *> The (n-1) subdiagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is COMPLEX array, dimension (N)
- *> The diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] DU
- *> \verbatim
- *> DU is COMPLEX array, dimension (N-1)
- *> The (n-1) superdiagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] DLF
- *> \verbatim
- *> DLF is COMPLEX array, dimension (N-1)
- *> The (n-1) multipliers that define the matrix L from the
- *> LU factorization of A as computed by CGTTRF.
- *> \endverbatim
- *>
- *> \param[in] DF
- *> \verbatim
- *> DF is COMPLEX array, dimension (N)
- *> The n diagonal elements of the upper triangular matrix U from
- *> the LU factorization of A.
- *> \endverbatim
- *>
- *> \param[in] DUF
- *> \verbatim
- *> DUF is COMPLEX array, dimension (N-1)
- *> The (n-1) elements of the first superdiagonal of U.
- *> \endverbatim
- *>
- *> \param[in] DU2
- *> \verbatim
- *> DU2 is COMPLEX array, dimension (N-2)
- *> The (n-2) elements of the second superdiagonal of U.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices; for 1 <= i <= n, row i of the matrix was
- *> interchanged with row IPIV(i). IPIV(i) will always be either
- *> i or i+1; IPIV(i) = i indicates a row interchange was not
- *> required.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> The right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> On entry, the solution matrix X, as computed by CGTTRS.
- *> On exit, the improved solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- *> \par Internal Parameters:
- * =========================
- *>
- *> \verbatim
- *> ITMAX is the maximum number of steps of iterative refinement.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGTcomputational
- *
- * =====================================================================
- SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
- $ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER INFO, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL BERR( * ), FERR( * ), RWORK( * )
- COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ),
- $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
- $ WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER ITMAX
- PARAMETER ( ITMAX = 5 )
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- REAL TWO
- PARAMETER ( TWO = 2.0E+0 )
- REAL THREE
- PARAMETER ( THREE = 3.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN
- CHARACTER TRANSN, TRANST
- INTEGER COUNT, I, J, KASE, NZ
- REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
- COMPLEX ZDUM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CCOPY, CGTTRS, CLACN2, CLAGTM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CMPLX, MAX, REAL
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH
- EXTERNAL LSAME, SLAMCH
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NOTRAN = LSAME( TRANS, 'N' )
- IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -13
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -15
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGTRFS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
- DO 10 J = 1, NRHS
- FERR( J ) = ZERO
- BERR( J ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- IF( NOTRAN ) THEN
- TRANSN = 'N'
- TRANST = 'C'
- ELSE
- TRANSN = 'C'
- TRANST = 'N'
- END IF
- *
- * NZ = maximum number of nonzero elements in each row of A, plus 1
- *
- NZ = 4
- EPS = SLAMCH( 'Epsilon' )
- SAFMIN = SLAMCH( 'Safe minimum' )
- SAFE1 = NZ*SAFMIN
- SAFE2 = SAFE1 / EPS
- *
- * Do for each right hand side
- *
- DO 110 J = 1, NRHS
- *
- COUNT = 1
- LSTRES = THREE
- 20 CONTINUE
- *
- * Loop until stopping criterion is satisfied.
- *
- * Compute residual R = B - op(A) * X,
- * where op(A) = A, A**T, or A**H, depending on TRANS.
- *
- CALL CCOPY( N, B( 1, J ), 1, WORK, 1 )
- CALL CLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
- $ WORK, N )
- *
- * Compute abs(op(A))*abs(x) + abs(b) for use in the backward
- * error bound.
- *
- IF( NOTRAN ) THEN
- IF( N.EQ.1 ) THEN
- RWORK( 1 ) = CABS1( B( 1, J ) ) +
- $ CABS1( D( 1 ) )*CABS1( X( 1, J ) )
- ELSE
- RWORK( 1 ) = CABS1( B( 1, J ) ) +
- $ CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
- $ CABS1( DU( 1 ) )*CABS1( X( 2, J ) )
- DO 30 I = 2, N - 1
- RWORK( I ) = CABS1( B( I, J ) ) +
- $ CABS1( DL( I-1 ) )*CABS1( X( I-1, J ) ) +
- $ CABS1( D( I ) )*CABS1( X( I, J ) ) +
- $ CABS1( DU( I ) )*CABS1( X( I+1, J ) )
- 30 CONTINUE
- RWORK( N ) = CABS1( B( N, J ) ) +
- $ CABS1( DL( N-1 ) )*CABS1( X( N-1, J ) ) +
- $ CABS1( D( N ) )*CABS1( X( N, J ) )
- END IF
- ELSE
- IF( N.EQ.1 ) THEN
- RWORK( 1 ) = CABS1( B( 1, J ) ) +
- $ CABS1( D( 1 ) )*CABS1( X( 1, J ) )
- ELSE
- RWORK( 1 ) = CABS1( B( 1, J ) ) +
- $ CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
- $ CABS1( DL( 1 ) )*CABS1( X( 2, J ) )
- DO 40 I = 2, N - 1
- RWORK( I ) = CABS1( B( I, J ) ) +
- $ CABS1( DU( I-1 ) )*CABS1( X( I-1, J ) ) +
- $ CABS1( D( I ) )*CABS1( X( I, J ) ) +
- $ CABS1( DL( I ) )*CABS1( X( I+1, J ) )
- 40 CONTINUE
- RWORK( N ) = CABS1( B( N, J ) ) +
- $ CABS1( DU( N-1 ) )*CABS1( X( N-1, J ) ) +
- $ CABS1( D( N ) )*CABS1( X( N, J ) )
- END IF
- END IF
- *
- * Compute componentwise relative backward error from formula
- *
- * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
- *
- * where abs(Z) is the componentwise absolute value of the matrix
- * or vector Z. If the i-th component of the denominator is less
- * than SAFE2, then SAFE1 is added to the i-th components of the
- * numerator and denominator before dividing.
- *
- S = ZERO
- DO 50 I = 1, N
- IF( RWORK( I ).GT.SAFE2 ) THEN
- S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
- ELSE
- S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
- $ ( RWORK( I )+SAFE1 ) )
- END IF
- 50 CONTINUE
- BERR( J ) = S
- *
- * Test stopping criterion. Continue iterating if
- * 1) The residual BERR(J) is larger than machine epsilon, and
- * 2) BERR(J) decreased by at least a factor of 2 during the
- * last iteration, and
- * 3) At most ITMAX iterations tried.
- *
- IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
- $ COUNT.LE.ITMAX ) THEN
- *
- * Update solution and try again.
- *
- CALL CGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, WORK, N,
- $ INFO )
- CALL CAXPY( N, CMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
- LSTRES = BERR( J )
- COUNT = COUNT + 1
- GO TO 20
- END IF
- *
- * Bound error from formula
- *
- * norm(X - XTRUE) / norm(X) .le. FERR =
- * norm( abs(inv(op(A)))*
- * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
- *
- * where
- * norm(Z) is the magnitude of the largest component of Z
- * inv(op(A)) is the inverse of op(A)
- * abs(Z) is the componentwise absolute value of the matrix or
- * vector Z
- * NZ is the maximum number of nonzeros in any row of A, plus 1
- * EPS is machine epsilon
- *
- * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
- * is incremented by SAFE1 if the i-th component of
- * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
- *
- * Use CLACN2 to estimate the infinity-norm of the matrix
- * inv(op(A)) * diag(W),
- * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
- *
- DO 60 I = 1, N
- IF( RWORK( I ).GT.SAFE2 ) THEN
- RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
- ELSE
- RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
- $ SAFE1
- END IF
- 60 CONTINUE
- *
- KASE = 0
- 70 CONTINUE
- CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- *
- * Multiply by diag(W)*inv(op(A)**H).
- *
- CALL CGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
- $ N, INFO )
- DO 80 I = 1, N
- WORK( I ) = RWORK( I )*WORK( I )
- 80 CONTINUE
- ELSE
- *
- * Multiply by inv(op(A))*diag(W).
- *
- DO 90 I = 1, N
- WORK( I ) = RWORK( I )*WORK( I )
- 90 CONTINUE
- CALL CGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
- $ N, INFO )
- END IF
- GO TO 70
- END IF
- *
- * Normalize error.
- *
- LSTRES = ZERO
- DO 100 I = 1, N
- LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
- 100 CONTINUE
- IF( LSTRES.NE.ZERO )
- $ FERR( J ) = FERR( J ) / LSTRES
- *
- 110 CONTINUE
- *
- RETURN
- *
- * End of CGTRFS
- *
- END
|