You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgtrfs.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. *> \brief \b CGTRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGTRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
  22. * IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER TRANS
  27. * INTEGER INFO, LDB, LDX, N, NRHS
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * )
  31. * REAL BERR( * ), FERR( * ), RWORK( * )
  32. * COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ),
  33. * $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
  34. * $ WORK( * ), X( LDX, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> CGTRFS improves the computed solution to a system of linear
  44. *> equations when the coefficient matrix is tridiagonal, and provides
  45. *> error bounds and backward error estimates for the solution.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] TRANS
  52. *> \verbatim
  53. *> TRANS is CHARACTER*1
  54. *> Specifies the form of the system of equations:
  55. *> = 'N': A * X = B (No transpose)
  56. *> = 'T': A**T * X = B (Transpose)
  57. *> = 'C': A**H * X = B (Conjugate transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] NRHS
  67. *> \verbatim
  68. *> NRHS is INTEGER
  69. *> The number of right hand sides, i.e., the number of columns
  70. *> of the matrix B. NRHS >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] DL
  74. *> \verbatim
  75. *> DL is COMPLEX array, dimension (N-1)
  76. *> The (n-1) subdiagonal elements of A.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] D
  80. *> \verbatim
  81. *> D is COMPLEX array, dimension (N)
  82. *> The diagonal elements of A.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] DU
  86. *> \verbatim
  87. *> DU is COMPLEX array, dimension (N-1)
  88. *> The (n-1) superdiagonal elements of A.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] DLF
  92. *> \verbatim
  93. *> DLF is COMPLEX array, dimension (N-1)
  94. *> The (n-1) multipliers that define the matrix L from the
  95. *> LU factorization of A as computed by CGTTRF.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] DF
  99. *> \verbatim
  100. *> DF is COMPLEX array, dimension (N)
  101. *> The n diagonal elements of the upper triangular matrix U from
  102. *> the LU factorization of A.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] DUF
  106. *> \verbatim
  107. *> DUF is COMPLEX array, dimension (N-1)
  108. *> The (n-1) elements of the first superdiagonal of U.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] DU2
  112. *> \verbatim
  113. *> DU2 is COMPLEX array, dimension (N-2)
  114. *> The (n-2) elements of the second superdiagonal of U.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] IPIV
  118. *> \verbatim
  119. *> IPIV is INTEGER array, dimension (N)
  120. *> The pivot indices; for 1 <= i <= n, row i of the matrix was
  121. *> interchanged with row IPIV(i). IPIV(i) will always be either
  122. *> i or i+1; IPIV(i) = i indicates a row interchange was not
  123. *> required.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] B
  127. *> \verbatim
  128. *> B is COMPLEX array, dimension (LDB,NRHS)
  129. *> The right hand side matrix B.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDB
  133. *> \verbatim
  134. *> LDB is INTEGER
  135. *> The leading dimension of the array B. LDB >= max(1,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[in,out] X
  139. *> \verbatim
  140. *> X is COMPLEX array, dimension (LDX,NRHS)
  141. *> On entry, the solution matrix X, as computed by CGTTRS.
  142. *> On exit, the improved solution matrix X.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDX
  146. *> \verbatim
  147. *> LDX is INTEGER
  148. *> The leading dimension of the array X. LDX >= max(1,N).
  149. *> \endverbatim
  150. *>
  151. *> \param[out] FERR
  152. *> \verbatim
  153. *> FERR is REAL array, dimension (NRHS)
  154. *> The estimated forward error bound for each solution vector
  155. *> X(j) (the j-th column of the solution matrix X).
  156. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  157. *> is an estimated upper bound for the magnitude of the largest
  158. *> element in (X(j) - XTRUE) divided by the magnitude of the
  159. *> largest element in X(j). The estimate is as reliable as
  160. *> the estimate for RCOND, and is almost always a slight
  161. *> overestimate of the true error.
  162. *> \endverbatim
  163. *>
  164. *> \param[out] BERR
  165. *> \verbatim
  166. *> BERR is REAL array, dimension (NRHS)
  167. *> The componentwise relative backward error of each solution
  168. *> vector X(j) (i.e., the smallest relative change in
  169. *> any element of A or B that makes X(j) an exact solution).
  170. *> \endverbatim
  171. *>
  172. *> \param[out] WORK
  173. *> \verbatim
  174. *> WORK is COMPLEX array, dimension (2*N)
  175. *> \endverbatim
  176. *>
  177. *> \param[out] RWORK
  178. *> \verbatim
  179. *> RWORK is REAL array, dimension (N)
  180. *> \endverbatim
  181. *>
  182. *> \param[out] INFO
  183. *> \verbatim
  184. *> INFO is INTEGER
  185. *> = 0: successful exit
  186. *> < 0: if INFO = -i, the i-th argument had an illegal value
  187. *> \endverbatim
  188. *
  189. *> \par Internal Parameters:
  190. * =========================
  191. *>
  192. *> \verbatim
  193. *> ITMAX is the maximum number of steps of iterative refinement.
  194. *> \endverbatim
  195. *
  196. * Authors:
  197. * ========
  198. *
  199. *> \author Univ. of Tennessee
  200. *> \author Univ. of California Berkeley
  201. *> \author Univ. of Colorado Denver
  202. *> \author NAG Ltd.
  203. *
  204. *> \ingroup complexGTcomputational
  205. *
  206. * =====================================================================
  207. SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
  208. $ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
  209. $ INFO )
  210. *
  211. * -- LAPACK computational routine --
  212. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  213. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  214. *
  215. * .. Scalar Arguments ..
  216. CHARACTER TRANS
  217. INTEGER INFO, LDB, LDX, N, NRHS
  218. * ..
  219. * .. Array Arguments ..
  220. INTEGER IPIV( * )
  221. REAL BERR( * ), FERR( * ), RWORK( * )
  222. COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ),
  223. $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
  224. $ WORK( * ), X( LDX, * )
  225. * ..
  226. *
  227. * =====================================================================
  228. *
  229. * .. Parameters ..
  230. INTEGER ITMAX
  231. PARAMETER ( ITMAX = 5 )
  232. REAL ZERO, ONE
  233. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  234. REAL TWO
  235. PARAMETER ( TWO = 2.0E+0 )
  236. REAL THREE
  237. PARAMETER ( THREE = 3.0E+0 )
  238. * ..
  239. * .. Local Scalars ..
  240. LOGICAL NOTRAN
  241. CHARACTER TRANSN, TRANST
  242. INTEGER COUNT, I, J, KASE, NZ
  243. REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
  244. COMPLEX ZDUM
  245. * ..
  246. * .. Local Arrays ..
  247. INTEGER ISAVE( 3 )
  248. * ..
  249. * .. External Subroutines ..
  250. EXTERNAL CAXPY, CCOPY, CGTTRS, CLACN2, CLAGTM, XERBLA
  251. * ..
  252. * .. Intrinsic Functions ..
  253. INTRINSIC ABS, AIMAG, CMPLX, MAX, REAL
  254. * ..
  255. * .. External Functions ..
  256. LOGICAL LSAME
  257. REAL SLAMCH
  258. EXTERNAL LSAME, SLAMCH
  259. * ..
  260. * .. Statement Functions ..
  261. REAL CABS1
  262. * ..
  263. * .. Statement Function definitions ..
  264. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  265. * ..
  266. * .. Executable Statements ..
  267. *
  268. * Test the input parameters.
  269. *
  270. INFO = 0
  271. NOTRAN = LSAME( TRANS, 'N' )
  272. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  273. $ LSAME( TRANS, 'C' ) ) THEN
  274. INFO = -1
  275. ELSE IF( N.LT.0 ) THEN
  276. INFO = -2
  277. ELSE IF( NRHS.LT.0 ) THEN
  278. INFO = -3
  279. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  280. INFO = -13
  281. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  282. INFO = -15
  283. END IF
  284. IF( INFO.NE.0 ) THEN
  285. CALL XERBLA( 'CGTRFS', -INFO )
  286. RETURN
  287. END IF
  288. *
  289. * Quick return if possible
  290. *
  291. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  292. DO 10 J = 1, NRHS
  293. FERR( J ) = ZERO
  294. BERR( J ) = ZERO
  295. 10 CONTINUE
  296. RETURN
  297. END IF
  298. *
  299. IF( NOTRAN ) THEN
  300. TRANSN = 'N'
  301. TRANST = 'C'
  302. ELSE
  303. TRANSN = 'C'
  304. TRANST = 'N'
  305. END IF
  306. *
  307. * NZ = maximum number of nonzero elements in each row of A, plus 1
  308. *
  309. NZ = 4
  310. EPS = SLAMCH( 'Epsilon' )
  311. SAFMIN = SLAMCH( 'Safe minimum' )
  312. SAFE1 = NZ*SAFMIN
  313. SAFE2 = SAFE1 / EPS
  314. *
  315. * Do for each right hand side
  316. *
  317. DO 110 J = 1, NRHS
  318. *
  319. COUNT = 1
  320. LSTRES = THREE
  321. 20 CONTINUE
  322. *
  323. * Loop until stopping criterion is satisfied.
  324. *
  325. * Compute residual R = B - op(A) * X,
  326. * where op(A) = A, A**T, or A**H, depending on TRANS.
  327. *
  328. CALL CCOPY( N, B( 1, J ), 1, WORK, 1 )
  329. CALL CLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
  330. $ WORK, N )
  331. *
  332. * Compute abs(op(A))*abs(x) + abs(b) for use in the backward
  333. * error bound.
  334. *
  335. IF( NOTRAN ) THEN
  336. IF( N.EQ.1 ) THEN
  337. RWORK( 1 ) = CABS1( B( 1, J ) ) +
  338. $ CABS1( D( 1 ) )*CABS1( X( 1, J ) )
  339. ELSE
  340. RWORK( 1 ) = CABS1( B( 1, J ) ) +
  341. $ CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
  342. $ CABS1( DU( 1 ) )*CABS1( X( 2, J ) )
  343. DO 30 I = 2, N - 1
  344. RWORK( I ) = CABS1( B( I, J ) ) +
  345. $ CABS1( DL( I-1 ) )*CABS1( X( I-1, J ) ) +
  346. $ CABS1( D( I ) )*CABS1( X( I, J ) ) +
  347. $ CABS1( DU( I ) )*CABS1( X( I+1, J ) )
  348. 30 CONTINUE
  349. RWORK( N ) = CABS1( B( N, J ) ) +
  350. $ CABS1( DL( N-1 ) )*CABS1( X( N-1, J ) ) +
  351. $ CABS1( D( N ) )*CABS1( X( N, J ) )
  352. END IF
  353. ELSE
  354. IF( N.EQ.1 ) THEN
  355. RWORK( 1 ) = CABS1( B( 1, J ) ) +
  356. $ CABS1( D( 1 ) )*CABS1( X( 1, J ) )
  357. ELSE
  358. RWORK( 1 ) = CABS1( B( 1, J ) ) +
  359. $ CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
  360. $ CABS1( DL( 1 ) )*CABS1( X( 2, J ) )
  361. DO 40 I = 2, N - 1
  362. RWORK( I ) = CABS1( B( I, J ) ) +
  363. $ CABS1( DU( I-1 ) )*CABS1( X( I-1, J ) ) +
  364. $ CABS1( D( I ) )*CABS1( X( I, J ) ) +
  365. $ CABS1( DL( I ) )*CABS1( X( I+1, J ) )
  366. 40 CONTINUE
  367. RWORK( N ) = CABS1( B( N, J ) ) +
  368. $ CABS1( DU( N-1 ) )*CABS1( X( N-1, J ) ) +
  369. $ CABS1( D( N ) )*CABS1( X( N, J ) )
  370. END IF
  371. END IF
  372. *
  373. * Compute componentwise relative backward error from formula
  374. *
  375. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  376. *
  377. * where abs(Z) is the componentwise absolute value of the matrix
  378. * or vector Z. If the i-th component of the denominator is less
  379. * than SAFE2, then SAFE1 is added to the i-th components of the
  380. * numerator and denominator before dividing.
  381. *
  382. S = ZERO
  383. DO 50 I = 1, N
  384. IF( RWORK( I ).GT.SAFE2 ) THEN
  385. S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  386. ELSE
  387. S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  388. $ ( RWORK( I )+SAFE1 ) )
  389. END IF
  390. 50 CONTINUE
  391. BERR( J ) = S
  392. *
  393. * Test stopping criterion. Continue iterating if
  394. * 1) The residual BERR(J) is larger than machine epsilon, and
  395. * 2) BERR(J) decreased by at least a factor of 2 during the
  396. * last iteration, and
  397. * 3) At most ITMAX iterations tried.
  398. *
  399. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  400. $ COUNT.LE.ITMAX ) THEN
  401. *
  402. * Update solution and try again.
  403. *
  404. CALL CGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, WORK, N,
  405. $ INFO )
  406. CALL CAXPY( N, CMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
  407. LSTRES = BERR( J )
  408. COUNT = COUNT + 1
  409. GO TO 20
  410. END IF
  411. *
  412. * Bound error from formula
  413. *
  414. * norm(X - XTRUE) / norm(X) .le. FERR =
  415. * norm( abs(inv(op(A)))*
  416. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  417. *
  418. * where
  419. * norm(Z) is the magnitude of the largest component of Z
  420. * inv(op(A)) is the inverse of op(A)
  421. * abs(Z) is the componentwise absolute value of the matrix or
  422. * vector Z
  423. * NZ is the maximum number of nonzeros in any row of A, plus 1
  424. * EPS is machine epsilon
  425. *
  426. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  427. * is incremented by SAFE1 if the i-th component of
  428. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  429. *
  430. * Use CLACN2 to estimate the infinity-norm of the matrix
  431. * inv(op(A)) * diag(W),
  432. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  433. *
  434. DO 60 I = 1, N
  435. IF( RWORK( I ).GT.SAFE2 ) THEN
  436. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  437. ELSE
  438. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  439. $ SAFE1
  440. END IF
  441. 60 CONTINUE
  442. *
  443. KASE = 0
  444. 70 CONTINUE
  445. CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  446. IF( KASE.NE.0 ) THEN
  447. IF( KASE.EQ.1 ) THEN
  448. *
  449. * Multiply by diag(W)*inv(op(A)**H).
  450. *
  451. CALL CGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
  452. $ N, INFO )
  453. DO 80 I = 1, N
  454. WORK( I ) = RWORK( I )*WORK( I )
  455. 80 CONTINUE
  456. ELSE
  457. *
  458. * Multiply by inv(op(A))*diag(W).
  459. *
  460. DO 90 I = 1, N
  461. WORK( I ) = RWORK( I )*WORK( I )
  462. 90 CONTINUE
  463. CALL CGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
  464. $ N, INFO )
  465. END IF
  466. GO TO 70
  467. END IF
  468. *
  469. * Normalize error.
  470. *
  471. LSTRES = ZERO
  472. DO 100 I = 1, N
  473. LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  474. 100 CONTINUE
  475. IF( LSTRES.NE.ZERO )
  476. $ FERR( J ) = FERR( J ) / LSTRES
  477. *
  478. 110 CONTINUE
  479. *
  480. RETURN
  481. *
  482. * End of CGTRFS
  483. *
  484. END