|
- *> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGEGS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
- * VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVSL, JOBVSR
- * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
- * $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine ZGGES.
- *>
- *> ZGEGS computes the eigenvalues, Schur form, and, optionally, the
- *> left and or/right Schur vectors of a complex matrix pair (A,B).
- *> Given two square matrices A and B, the generalized Schur
- *> factorization has the form
- *>
- *> A = Q*S*Z**H, B = Q*T*Z**H
- *>
- *> where Q and Z are unitary matrices and S and T are upper triangular.
- *> The columns of Q are the left Schur vectors
- *> and the columns of Z are the right Schur vectors.
- *>
- *> If only the eigenvalues of (A,B) are needed, the driver routine
- *> ZGEGV should be used instead. See ZGEGV for a description of the
- *> eigenvalues of the generalized nonsymmetric eigenvalue problem
- *> (GNEP).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVSL
- *> \verbatim
- *> JOBVSL is CHARACTER*1
- *> = 'N': do not compute the left Schur vectors;
- *> = 'V': compute the left Schur vectors (returned in VSL).
- *> \endverbatim
- *>
- *> \param[in] JOBVSR
- *> \verbatim
- *> JOBVSR is CHARACTER*1
- *> = 'N': do not compute the right Schur vectors;
- *> = 'V': compute the right Schur vectors (returned in VSR).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A, B, VSL, and VSR. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA, N)
- *> On entry, the matrix A.
- *> On exit, the upper triangular matrix S from the generalized
- *> Schur factorization.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB, N)
- *> On entry, the matrix B.
- *> On exit, the upper triangular matrix T from the generalized
- *> Schur factorization.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX*16 array, dimension (N)
- *> The complex scalars alpha that define the eigenvalues of
- *> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur
- *> form of A.
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is COMPLEX*16 array, dimension (N)
- *> The non-negative real scalars beta that define the
- *> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
- *> of the triangular factor T.
- *>
- *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
- *> represent the j-th eigenvalue of the matrix pair (A,B), in
- *> one of the forms lambda = alpha/beta or mu = beta/alpha.
- *> Since either lambda or mu may overflow, they should not,
- *> in general, be computed.
- *> \endverbatim
- *>
- *> \param[out] VSL
- *> \verbatim
- *> VSL is COMPLEX*16 array, dimension (LDVSL,N)
- *> If JOBVSL = 'V', the matrix of left Schur vectors Q.
- *> Not referenced if JOBVSL = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVSL
- *> \verbatim
- *> LDVSL is INTEGER
- *> The leading dimension of the matrix VSL. LDVSL >= 1, and
- *> if JOBVSL = 'V', LDVSL >= N.
- *> \endverbatim
- *>
- *> \param[out] VSR
- *> \verbatim
- *> VSR is COMPLEX*16 array, dimension (LDVSR,N)
- *> If JOBVSR = 'V', the matrix of right Schur vectors Z.
- *> Not referenced if JOBVSR = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVSR
- *> \verbatim
- *> LDVSR is INTEGER
- *> The leading dimension of the matrix VSR. LDVSR >= 1, and
- *> if JOBVSR = 'V', LDVSR >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,2*N).
- *> For good performance, LWORK must generally be larger.
- *> To compute the optimal value of LWORK, call ILAENV to get
- *> blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute:
- *> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
- *> the optimal LWORK is N*(NB+1).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> =1,...,N:
- *> The QZ iteration failed. (A,B) are not in Schur
- *> form, but ALPHA(j) and BETA(j) should be correct for
- *> j=INFO+1,...,N.
- *> > N: errors that usually indicate LAPACK problems:
- *> =N+1: error return from ZGGBAL
- *> =N+2: error return from ZGEQRF
- *> =N+3: error return from ZUNMQR
- *> =N+4: error return from ZUNGQR
- *> =N+5: error return from ZGGHRD
- *> =N+6: error return from ZHGEQZ (other than failed
- *> iteration)
- *> =N+7: error return from ZGGBAK (computing VSL)
- *> =N+8: error return from ZGGBAK (computing VSR)
- *> =N+9: error return from ZLASCL (various places)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex16GEeigen
- *
- * =====================================================================
- SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
- $ VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
- $ INFO )
- *
- * -- LAPACK driver routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVSL, JOBVSR
- INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
- $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
- $ CONE = ( 1.0D0, 0.0D0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
- INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IRIGHT, IROWS, IRWORK, ITAU, IWORK, LOPT,
- $ LWKMIN, LWKOPT, NB, NB1, NB2, NB3
- DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
- $ SAFMIN, SMLNUM
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
- $ ZLACPY, ZLASCL, ZLASET, ZUNGQR, ZUNMQR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, ZLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX
- * ..
- * .. Executable Statements ..
- *
- * Decode the input arguments
- *
- IF( LSAME( JOBVSL, 'N' ) ) THEN
- IJOBVL = 1
- ILVSL = .FALSE.
- ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
- IJOBVL = 2
- ILVSL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVSL = .FALSE.
- END IF
- *
- IF( LSAME( JOBVSR, 'N' ) ) THEN
- IJOBVR = 1
- ILVSR = .FALSE.
- ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
- IJOBVR = 2
- ILVSR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVSR = .FALSE.
- END IF
- *
- * Test the input arguments
- *
- LWKMIN = MAX( 2*N, 1 )
- LWKOPT = LWKMIN
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- INFO = 0
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
- INFO = -11
- ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
- INFO = -13
- ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -15
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
- NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
- NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
- NB = MAX( NB1, NB2, NB3 )
- LOPT = N*( NB+1 )
- WORK( 1 ) = LOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGEGS ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
- SAFMIN = DLAMCH( 'S' )
- SMLNUM = N*SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
- ILASCL = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ANRMTO = SMLNUM
- ILASCL = .TRUE.
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ANRMTO = BIGNUM
- ILASCL = .TRUE.
- END IF
- *
- IF( ILASCL ) THEN
- CALL ZLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- * Scale B if max element outside range [SMLNUM,BIGNUM]
- *
- BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
- ILBSCL = .FALSE.
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- BNRMTO = SMLNUM
- ILBSCL = .TRUE.
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- BNRMTO = BIGNUM
- ILBSCL = .TRUE.
- END IF
- *
- IF( ILBSCL ) THEN
- CALL ZLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- * Permute the matrix to make it more nearly triangular
- *
- ILEFT = 1
- IRIGHT = N + 1
- IRWORK = IRIGHT + N
- IWORK = 1
- CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
- $ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 1
- GO TO 10
- END IF
- *
- * Reduce B to triangular form, and initialize VSL and/or VSR
- *
- IROWS = IHI + 1 - ILO
- ICOLS = N + 1 - ILO
- ITAU = IWORK
- IWORK = ITAU + IROWS
- CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 2
- GO TO 10
- END IF
- *
- CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
- $ LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 3
- GO TO 10
- END IF
- *
- IF( ILVSL ) THEN
- CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
- CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VSL( ILO+1, ILO ), LDVSL )
- CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
- $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
- $ IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 4
- GO TO 10
- END IF
- END IF
- *
- IF( ILVSR )
- $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
- *
- * Reduce to generalized Hessenberg form
- *
- CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
- $ LDVSL, VSR, LDVSR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 5
- GO TO 10
- END IF
- *
- * Perform QZ algorithm, computing Schur vectors if desired
- *
- IWORK = ITAU
- CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ),
- $ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
- INFO = IINFO
- ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
- INFO = IINFO - N
- ELSE
- INFO = N + 6
- END IF
- GO TO 10
- END IF
- *
- * Apply permutation to VSL and VSR
- *
- IF( ILVSL ) THEN
- CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
- $ RWORK( IRIGHT ), N, VSL, LDVSL, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 7
- GO TO 10
- END IF
- END IF
- IF( ILVSR ) THEN
- CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
- $ RWORK( IRIGHT ), N, VSR, LDVSR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 8
- GO TO 10
- END IF
- END IF
- *
- * Undo scaling
- *
- IF( ILASCL ) THEN
- CALL ZLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL ZLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- IF( ILBSCL ) THEN
- CALL ZLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL ZLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- 10 CONTINUE
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of ZGEGS
- *
- END
|