You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgegs.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. *> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGEGS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
  22. * VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVSL, JOBVSR
  27. * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION RWORK( * )
  31. * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  32. * $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  33. * $ WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> This routine is deprecated and has been replaced by routine ZGGES.
  43. *>
  44. *> ZGEGS computes the eigenvalues, Schur form, and, optionally, the
  45. *> left and or/right Schur vectors of a complex matrix pair (A,B).
  46. *> Given two square matrices A and B, the generalized Schur
  47. *> factorization has the form
  48. *>
  49. *> A = Q*S*Z**H, B = Q*T*Z**H
  50. *>
  51. *> where Q and Z are unitary matrices and S and T are upper triangular.
  52. *> The columns of Q are the left Schur vectors
  53. *> and the columns of Z are the right Schur vectors.
  54. *>
  55. *> If only the eigenvalues of (A,B) are needed, the driver routine
  56. *> ZGEGV should be used instead. See ZGEGV for a description of the
  57. *> eigenvalues of the generalized nonsymmetric eigenvalue problem
  58. *> (GNEP).
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] JOBVSL
  65. *> \verbatim
  66. *> JOBVSL is CHARACTER*1
  67. *> = 'N': do not compute the left Schur vectors;
  68. *> = 'V': compute the left Schur vectors (returned in VSL).
  69. *> \endverbatim
  70. *>
  71. *> \param[in] JOBVSR
  72. *> \verbatim
  73. *> JOBVSR is CHARACTER*1
  74. *> = 'N': do not compute the right Schur vectors;
  75. *> = 'V': compute the right Schur vectors (returned in VSR).
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> The order of the matrices A, B, VSL, and VSR. N >= 0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in,out] A
  85. *> \verbatim
  86. *> A is COMPLEX*16 array, dimension (LDA, N)
  87. *> On entry, the matrix A.
  88. *> On exit, the upper triangular matrix S from the generalized
  89. *> Schur factorization.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDA
  93. *> \verbatim
  94. *> LDA is INTEGER
  95. *> The leading dimension of A. LDA >= max(1,N).
  96. *> \endverbatim
  97. *>
  98. *> \param[in,out] B
  99. *> \verbatim
  100. *> B is COMPLEX*16 array, dimension (LDB, N)
  101. *> On entry, the matrix B.
  102. *> On exit, the upper triangular matrix T from the generalized
  103. *> Schur factorization.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDB
  107. *> \verbatim
  108. *> LDB is INTEGER
  109. *> The leading dimension of B. LDB >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] ALPHA
  113. *> \verbatim
  114. *> ALPHA is COMPLEX*16 array, dimension (N)
  115. *> The complex scalars alpha that define the eigenvalues of
  116. *> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur
  117. *> form of A.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] BETA
  121. *> \verbatim
  122. *> BETA is COMPLEX*16 array, dimension (N)
  123. *> The non-negative real scalars beta that define the
  124. *> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
  125. *> of the triangular factor T.
  126. *>
  127. *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
  128. *> represent the j-th eigenvalue of the matrix pair (A,B), in
  129. *> one of the forms lambda = alpha/beta or mu = beta/alpha.
  130. *> Since either lambda or mu may overflow, they should not,
  131. *> in general, be computed.
  132. *> \endverbatim
  133. *>
  134. *> \param[out] VSL
  135. *> \verbatim
  136. *> VSL is COMPLEX*16 array, dimension (LDVSL,N)
  137. *> If JOBVSL = 'V', the matrix of left Schur vectors Q.
  138. *> Not referenced if JOBVSL = 'N'.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDVSL
  142. *> \verbatim
  143. *> LDVSL is INTEGER
  144. *> The leading dimension of the matrix VSL. LDVSL >= 1, and
  145. *> if JOBVSL = 'V', LDVSL >= N.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] VSR
  149. *> \verbatim
  150. *> VSR is COMPLEX*16 array, dimension (LDVSR,N)
  151. *> If JOBVSR = 'V', the matrix of right Schur vectors Z.
  152. *> Not referenced if JOBVSR = 'N'.
  153. *> \endverbatim
  154. *>
  155. *> \param[in] LDVSR
  156. *> \verbatim
  157. *> LDVSR is INTEGER
  158. *> The leading dimension of the matrix VSR. LDVSR >= 1, and
  159. *> if JOBVSR = 'V', LDVSR >= N.
  160. *> \endverbatim
  161. *>
  162. *> \param[out] WORK
  163. *> \verbatim
  164. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  165. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  166. *> \endverbatim
  167. *>
  168. *> \param[in] LWORK
  169. *> \verbatim
  170. *> LWORK is INTEGER
  171. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  172. *> For good performance, LWORK must generally be larger.
  173. *> To compute the optimal value of LWORK, call ILAENV to get
  174. *> blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute:
  175. *> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
  176. *> the optimal LWORK is N*(NB+1).
  177. *>
  178. *> If LWORK = -1, then a workspace query is assumed; the routine
  179. *> only calculates the optimal size of the WORK array, returns
  180. *> this value as the first entry of the WORK array, and no error
  181. *> message related to LWORK is issued by XERBLA.
  182. *> \endverbatim
  183. *>
  184. *> \param[out] RWORK
  185. *> \verbatim
  186. *> RWORK is DOUBLE PRECISION array, dimension (3*N)
  187. *> \endverbatim
  188. *>
  189. *> \param[out] INFO
  190. *> \verbatim
  191. *> INFO is INTEGER
  192. *> = 0: successful exit
  193. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  194. *> =1,...,N:
  195. *> The QZ iteration failed. (A,B) are not in Schur
  196. *> form, but ALPHA(j) and BETA(j) should be correct for
  197. *> j=INFO+1,...,N.
  198. *> > N: errors that usually indicate LAPACK problems:
  199. *> =N+1: error return from ZGGBAL
  200. *> =N+2: error return from ZGEQRF
  201. *> =N+3: error return from ZUNMQR
  202. *> =N+4: error return from ZUNGQR
  203. *> =N+5: error return from ZGGHRD
  204. *> =N+6: error return from ZHGEQZ (other than failed
  205. *> iteration)
  206. *> =N+7: error return from ZGGBAK (computing VSL)
  207. *> =N+8: error return from ZGGBAK (computing VSR)
  208. *> =N+9: error return from ZLASCL (various places)
  209. *> \endverbatim
  210. *
  211. * Authors:
  212. * ========
  213. *
  214. *> \author Univ. of Tennessee
  215. *> \author Univ. of California Berkeley
  216. *> \author Univ. of Colorado Denver
  217. *> \author NAG Ltd.
  218. *
  219. *> \date November 2011
  220. *
  221. *> \ingroup complex16GEeigen
  222. *
  223. * =====================================================================
  224. SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
  225. $ VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
  226. $ INFO )
  227. *
  228. * -- LAPACK driver routine (version 3.4.0) --
  229. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  230. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  231. * November 2011
  232. *
  233. * .. Scalar Arguments ..
  234. CHARACTER JOBVSL, JOBVSR
  235. INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  236. * ..
  237. * .. Array Arguments ..
  238. DOUBLE PRECISION RWORK( * )
  239. COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  240. $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  241. $ WORK( * )
  242. * ..
  243. *
  244. * =====================================================================
  245. *
  246. * .. Parameters ..
  247. DOUBLE PRECISION ZERO, ONE
  248. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  249. COMPLEX*16 CZERO, CONE
  250. PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
  251. $ CONE = ( 1.0D0, 0.0D0 ) )
  252. * ..
  253. * .. Local Scalars ..
  254. LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
  255. INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  256. $ IRIGHT, IROWS, IRWORK, ITAU, IWORK, LOPT,
  257. $ LWKMIN, LWKOPT, NB, NB1, NB2, NB3
  258. DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  259. $ SAFMIN, SMLNUM
  260. * ..
  261. * .. External Subroutines ..
  262. EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
  263. $ ZLACPY, ZLASCL, ZLASET, ZUNGQR, ZUNMQR
  264. * ..
  265. * .. External Functions ..
  266. LOGICAL LSAME
  267. INTEGER ILAENV
  268. DOUBLE PRECISION DLAMCH, ZLANGE
  269. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  270. * ..
  271. * .. Intrinsic Functions ..
  272. INTRINSIC INT, MAX
  273. * ..
  274. * .. Executable Statements ..
  275. *
  276. * Decode the input arguments
  277. *
  278. IF( LSAME( JOBVSL, 'N' ) ) THEN
  279. IJOBVL = 1
  280. ILVSL = .FALSE.
  281. ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  282. IJOBVL = 2
  283. ILVSL = .TRUE.
  284. ELSE
  285. IJOBVL = -1
  286. ILVSL = .FALSE.
  287. END IF
  288. *
  289. IF( LSAME( JOBVSR, 'N' ) ) THEN
  290. IJOBVR = 1
  291. ILVSR = .FALSE.
  292. ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  293. IJOBVR = 2
  294. ILVSR = .TRUE.
  295. ELSE
  296. IJOBVR = -1
  297. ILVSR = .FALSE.
  298. END IF
  299. *
  300. * Test the input arguments
  301. *
  302. LWKMIN = MAX( 2*N, 1 )
  303. LWKOPT = LWKMIN
  304. WORK( 1 ) = LWKOPT
  305. LQUERY = ( LWORK.EQ.-1 )
  306. INFO = 0
  307. IF( IJOBVL.LE.0 ) THEN
  308. INFO = -1
  309. ELSE IF( IJOBVR.LE.0 ) THEN
  310. INFO = -2
  311. ELSE IF( N.LT.0 ) THEN
  312. INFO = -3
  313. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  314. INFO = -5
  315. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  316. INFO = -7
  317. ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  318. INFO = -11
  319. ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  320. INFO = -13
  321. ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  322. INFO = -15
  323. END IF
  324. *
  325. IF( INFO.EQ.0 ) THEN
  326. NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
  327. NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
  328. NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
  329. NB = MAX( NB1, NB2, NB3 )
  330. LOPT = N*( NB+1 )
  331. WORK( 1 ) = LOPT
  332. END IF
  333. *
  334. IF( INFO.NE.0 ) THEN
  335. CALL XERBLA( 'ZGEGS ', -INFO )
  336. RETURN
  337. ELSE IF( LQUERY ) THEN
  338. RETURN
  339. END IF
  340. *
  341. * Quick return if possible
  342. *
  343. IF( N.EQ.0 )
  344. $ RETURN
  345. *
  346. * Get machine constants
  347. *
  348. EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  349. SAFMIN = DLAMCH( 'S' )
  350. SMLNUM = N*SAFMIN / EPS
  351. BIGNUM = ONE / SMLNUM
  352. *
  353. * Scale A if max element outside range [SMLNUM,BIGNUM]
  354. *
  355. ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  356. ILASCL = .FALSE.
  357. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  358. ANRMTO = SMLNUM
  359. ILASCL = .TRUE.
  360. ELSE IF( ANRM.GT.BIGNUM ) THEN
  361. ANRMTO = BIGNUM
  362. ILASCL = .TRUE.
  363. END IF
  364. *
  365. IF( ILASCL ) THEN
  366. CALL ZLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
  367. IF( IINFO.NE.0 ) THEN
  368. INFO = N + 9
  369. RETURN
  370. END IF
  371. END IF
  372. *
  373. * Scale B if max element outside range [SMLNUM,BIGNUM]
  374. *
  375. BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  376. ILBSCL = .FALSE.
  377. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  378. BNRMTO = SMLNUM
  379. ILBSCL = .TRUE.
  380. ELSE IF( BNRM.GT.BIGNUM ) THEN
  381. BNRMTO = BIGNUM
  382. ILBSCL = .TRUE.
  383. END IF
  384. *
  385. IF( ILBSCL ) THEN
  386. CALL ZLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
  387. IF( IINFO.NE.0 ) THEN
  388. INFO = N + 9
  389. RETURN
  390. END IF
  391. END IF
  392. *
  393. * Permute the matrix to make it more nearly triangular
  394. *
  395. ILEFT = 1
  396. IRIGHT = N + 1
  397. IRWORK = IRIGHT + N
  398. IWORK = 1
  399. CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  400. $ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
  401. IF( IINFO.NE.0 ) THEN
  402. INFO = N + 1
  403. GO TO 10
  404. END IF
  405. *
  406. * Reduce B to triangular form, and initialize VSL and/or VSR
  407. *
  408. IROWS = IHI + 1 - ILO
  409. ICOLS = N + 1 - ILO
  410. ITAU = IWORK
  411. IWORK = ITAU + IROWS
  412. CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  413. $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
  414. IF( IINFO.GE.0 )
  415. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  416. IF( IINFO.NE.0 ) THEN
  417. INFO = N + 2
  418. GO TO 10
  419. END IF
  420. *
  421. CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  422. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  423. $ LWORK+1-IWORK, IINFO )
  424. IF( IINFO.GE.0 )
  425. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  426. IF( IINFO.NE.0 ) THEN
  427. INFO = N + 3
  428. GO TO 10
  429. END IF
  430. *
  431. IF( ILVSL ) THEN
  432. CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  433. CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  434. $ VSL( ILO+1, ILO ), LDVSL )
  435. CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  436. $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  437. $ IINFO )
  438. IF( IINFO.GE.0 )
  439. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  440. IF( IINFO.NE.0 ) THEN
  441. INFO = N + 4
  442. GO TO 10
  443. END IF
  444. END IF
  445. *
  446. IF( ILVSR )
  447. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  448. *
  449. * Reduce to generalized Hessenberg form
  450. *
  451. CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  452. $ LDVSL, VSR, LDVSR, IINFO )
  453. IF( IINFO.NE.0 ) THEN
  454. INFO = N + 5
  455. GO TO 10
  456. END IF
  457. *
  458. * Perform QZ algorithm, computing Schur vectors if desired
  459. *
  460. IWORK = ITAU
  461. CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  462. $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ),
  463. $ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
  464. IF( IINFO.GE.0 )
  465. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  466. IF( IINFO.NE.0 ) THEN
  467. IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  468. INFO = IINFO
  469. ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  470. INFO = IINFO - N
  471. ELSE
  472. INFO = N + 6
  473. END IF
  474. GO TO 10
  475. END IF
  476. *
  477. * Apply permutation to VSL and VSR
  478. *
  479. IF( ILVSL ) THEN
  480. CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  481. $ RWORK( IRIGHT ), N, VSL, LDVSL, IINFO )
  482. IF( IINFO.NE.0 ) THEN
  483. INFO = N + 7
  484. GO TO 10
  485. END IF
  486. END IF
  487. IF( ILVSR ) THEN
  488. CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  489. $ RWORK( IRIGHT ), N, VSR, LDVSR, IINFO )
  490. IF( IINFO.NE.0 ) THEN
  491. INFO = N + 8
  492. GO TO 10
  493. END IF
  494. END IF
  495. *
  496. * Undo scaling
  497. *
  498. IF( ILASCL ) THEN
  499. CALL ZLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
  500. IF( IINFO.NE.0 ) THEN
  501. INFO = N + 9
  502. RETURN
  503. END IF
  504. CALL ZLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO )
  505. IF( IINFO.NE.0 ) THEN
  506. INFO = N + 9
  507. RETURN
  508. END IF
  509. END IF
  510. *
  511. IF( ILBSCL ) THEN
  512. CALL ZLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
  513. IF( IINFO.NE.0 ) THEN
  514. INFO = N + 9
  515. RETURN
  516. END IF
  517. CALL ZLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
  518. IF( IINFO.NE.0 ) THEN
  519. INFO = N + 9
  520. RETURN
  521. END IF
  522. END IF
  523. *
  524. 10 CONTINUE
  525. WORK( 1 ) = LWKOPT
  526. *
  527. RETURN
  528. *
  529. * End of ZGEGS
  530. *
  531. END