|
- *> \brief \b SGRQTS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
- * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LWORK, M, P, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
- * $ Q( LDA, * ),
- * $ B( LDB, * ), BF( LDB, * ), T( LDB, * ),
- * $ Z( LDB, * ), BWK( LDB, * ),
- * $ TAUA( * ), TAUB( * ),
- * $ RESULT( 4 ), RWORK( * ), WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGRQTS tests SGGRQF, which computes the GRQ factorization of an
- *> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The M-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is REAL array, dimension (LDA,N)
- *> Details of the GRQ factorization of A and B, as returned
- *> by SGGRQF, see SGGRQF for further details.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is REAL array, dimension (LDA,N)
- *> The N-by-N orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is REAL array, dimension (LDA,MAX(M,N))
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, R and Q.
- *> LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[out] TAUA
- *> \verbatim
- *> TAUA is REAL array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by SGGQRC.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,N)
- *> On entry, the P-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[out] BF
- *> \verbatim
- *> BF is REAL array, dimension (LDB,N)
- *> Details of the GQR factorization of A and B, as returned
- *> by SGGRQF, see SGGRQF for further details.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDB,P)
- *> The P-by-P orthogonal matrix Z.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is REAL array, dimension (LDB,max(P,N))
- *> \endverbatim
- *>
- *> \param[out] BWK
- *> \verbatim
- *> BWK is REAL array, dimension (LDB,N)
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the arrays B, BF, Z and T.
- *> LDB >= max(P,N).
- *> \endverbatim
- *>
- *> \param[out] TAUB
- *> \verbatim
- *> TAUB is REAL array, dimension (min(P,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by SGGRQF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK, LWORK >= max(M,P,N)**2.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (4)
- *> The test ratios:
- *> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
- *> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
- *> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
- *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
- $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LWORK, M, P, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
- $ Q( LDA, * ),
- $ B( LDB, * ), BF( LDB, * ), T( LDB, * ),
- $ Z( LDB, * ), BWK( LDB, * ),
- $ TAUA( * ), TAUB( * ),
- $ RESULT( 4 ), RWORK( * ), WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- REAL ROGUE
- PARAMETER ( ROGUE = -1.0E+10 )
- * ..
- * .. Local Scalars ..
- INTEGER INFO
- REAL ANORM, BNORM, ULP, UNFL, RESID
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SGGRQF, SLACPY, SLASET, SORGQR,
- $ SORGRQ, SSYRK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- ULP = SLAMCH( 'Precision' )
- UNFL = SLAMCH( 'Safe minimum' )
- *
- * Copy the matrix A to the array AF.
- *
- CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
- CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
- *
- ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
- BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
- *
- * Factorize the matrices A and B in the arrays AF and BF.
- *
- CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
- $ LWORK, INFO )
- *
- * Generate the N-by-N matrix Q
- *
- CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
- IF( M.LE.N ) THEN
- IF( M.GT.0 .AND. M.LT.N )
- $ CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
- IF( M.GT.1 )
- $ CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
- $ Q( N-M+2, N-M+1 ), LDA )
- ELSE
- IF( N.GT.1 )
- $ CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
- $ Q( 2, 1 ), LDA )
- END IF
- CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
- *
- * Generate the P-by-P matrix Z
- *
- CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
- IF( P.GT.1 )
- $ CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
- CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
- *
- * Copy R
- *
- CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
- IF( M.LE.N )THEN
- CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
- $ LDA )
- ELSE
- CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
- CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
- $ LDA )
- END IF
- *
- * Copy T
- *
- CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB )
- CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB )
- *
- * Compute R - A*Q'
- *
- CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
- $ LDA, ONE, R, LDA )
- *
- * Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
- *
- RESID = SLANGE( '1', M, N, R, LDA, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute T*Q - Z'*B
- *
- CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B,
- $ LDB, ZERO, BWK, LDB )
- CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB,
- $ Q, LDA, -ONE, BWK, LDB )
- *
- * Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
- *
- RESID = SLANGE( '1', P, N, BWK, LDB, RWORK )
- IF( BNORM.GT.ZERO ) THEN
- RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
- ELSE
- RESULT( 2 ) = ZERO
- END IF
- *
- * Compute I - Q*Q'
- *
- CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
- CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
- $ LDA )
- *
- * Compute norm( I - Q'*Q ) / ( N * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
- RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
- *
- * Compute I - Z'*Z
- *
- CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
- CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
- $ LDB )
- *
- * Compute norm( I - Z'*Z ) / ( P*ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
- RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
- *
- RETURN
- *
- * End of SGRQTS
- *
- END
|