You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgrqts.f 9.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. *> \brief \b SGRQTS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
  12. * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDB, LWORK, M, P, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
  19. * $ Q( LDA, * ),
  20. * $ B( LDB, * ), BF( LDB, * ), T( LDB, * ),
  21. * $ Z( LDB, * ), BWK( LDB, * ),
  22. * $ TAUA( * ), TAUB( * ),
  23. * $ RESULT( 4 ), RWORK( * ), WORK( LWORK )
  24. * ..
  25. *
  26. *
  27. *> \par Purpose:
  28. * =============
  29. *>
  30. *> \verbatim
  31. *>
  32. *> SGRQTS tests SGGRQF, which computes the GRQ factorization of an
  33. *> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrix A. M >= 0.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] P
  46. *> \verbatim
  47. *> P is INTEGER
  48. *> The number of rows of the matrix B. P >= 0.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The number of columns of the matrices A and B. N >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] A
  58. *> \verbatim
  59. *> A is REAL array, dimension (LDA,N)
  60. *> The M-by-N matrix A.
  61. *> \endverbatim
  62. *>
  63. *> \param[out] AF
  64. *> \verbatim
  65. *> AF is REAL array, dimension (LDA,N)
  66. *> Details of the GRQ factorization of A and B, as returned
  67. *> by SGGRQF, see SGGRQF for further details.
  68. *> \endverbatim
  69. *>
  70. *> \param[out] Q
  71. *> \verbatim
  72. *> Q is REAL array, dimension (LDA,N)
  73. *> The N-by-N orthogonal matrix Q.
  74. *> \endverbatim
  75. *>
  76. *> \param[out] R
  77. *> \verbatim
  78. *> R is REAL array, dimension (LDA,MAX(M,N))
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the arrays A, AF, R and Q.
  85. *> LDA >= max(M,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] TAUA
  89. *> \verbatim
  90. *> TAUA is REAL array, dimension (min(M,N))
  91. *> The scalar factors of the elementary reflectors, as returned
  92. *> by SGGQRC.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] B
  96. *> \verbatim
  97. *> B is REAL array, dimension (LDB,N)
  98. *> On entry, the P-by-N matrix A.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] BF
  102. *> \verbatim
  103. *> BF is REAL array, dimension (LDB,N)
  104. *> Details of the GQR factorization of A and B, as returned
  105. *> by SGGRQF, see SGGRQF for further details.
  106. *> \endverbatim
  107. *>
  108. *> \param[out] Z
  109. *> \verbatim
  110. *> Z is REAL array, dimension (LDB,P)
  111. *> The P-by-P orthogonal matrix Z.
  112. *> \endverbatim
  113. *>
  114. *> \param[out] T
  115. *> \verbatim
  116. *> T is REAL array, dimension (LDB,max(P,N))
  117. *> \endverbatim
  118. *>
  119. *> \param[out] BWK
  120. *> \verbatim
  121. *> BWK is REAL array, dimension (LDB,N)
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDB
  125. *> \verbatim
  126. *> LDB is INTEGER
  127. *> The leading dimension of the arrays B, BF, Z and T.
  128. *> LDB >= max(P,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] TAUB
  132. *> \verbatim
  133. *> TAUB is REAL array, dimension (min(P,N))
  134. *> The scalar factors of the elementary reflectors, as returned
  135. *> by SGGRQF.
  136. *> \endverbatim
  137. *>
  138. *> \param[out] WORK
  139. *> \verbatim
  140. *> WORK is REAL array, dimension (LWORK)
  141. *> \endverbatim
  142. *>
  143. *> \param[in] LWORK
  144. *> \verbatim
  145. *> LWORK is INTEGER
  146. *> The dimension of the array WORK, LWORK >= max(M,P,N)**2.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] RWORK
  150. *> \verbatim
  151. *> RWORK is REAL array, dimension (M)
  152. *> \endverbatim
  153. *>
  154. *> \param[out] RESULT
  155. *> \verbatim
  156. *> RESULT is REAL array, dimension (4)
  157. *> The test ratios:
  158. *> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
  159. *> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
  160. *> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
  161. *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
  162. *> \endverbatim
  163. *
  164. * Authors:
  165. * ========
  166. *
  167. *> \author Univ. of Tennessee
  168. *> \author Univ. of California Berkeley
  169. *> \author Univ. of Colorado Denver
  170. *> \author NAG Ltd.
  171. *
  172. *> \ingroup single_eig
  173. *
  174. * =====================================================================
  175. SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
  176. $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
  177. *
  178. * -- LAPACK test routine --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. *
  182. * .. Scalar Arguments ..
  183. INTEGER LDA, LDB, LWORK, M, P, N
  184. * ..
  185. * .. Array Arguments ..
  186. REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
  187. $ Q( LDA, * ),
  188. $ B( LDB, * ), BF( LDB, * ), T( LDB, * ),
  189. $ Z( LDB, * ), BWK( LDB, * ),
  190. $ TAUA( * ), TAUB( * ),
  191. $ RESULT( 4 ), RWORK( * ), WORK( LWORK )
  192. * ..
  193. *
  194. * =====================================================================
  195. *
  196. * .. Parameters ..
  197. REAL ZERO, ONE
  198. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  199. REAL ROGUE
  200. PARAMETER ( ROGUE = -1.0E+10 )
  201. * ..
  202. * .. Local Scalars ..
  203. INTEGER INFO
  204. REAL ANORM, BNORM, ULP, UNFL, RESID
  205. * ..
  206. * .. External Functions ..
  207. REAL SLAMCH, SLANGE, SLANSY
  208. EXTERNAL SLAMCH, SLANGE, SLANSY
  209. * ..
  210. * .. External Subroutines ..
  211. EXTERNAL SGEMM, SGGRQF, SLACPY, SLASET, SORGQR,
  212. $ SORGRQ, SSYRK
  213. * ..
  214. * .. Intrinsic Functions ..
  215. INTRINSIC MAX, MIN, REAL
  216. * ..
  217. * .. Executable Statements ..
  218. *
  219. ULP = SLAMCH( 'Precision' )
  220. UNFL = SLAMCH( 'Safe minimum' )
  221. *
  222. * Copy the matrix A to the array AF.
  223. *
  224. CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
  225. CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
  226. *
  227. ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
  228. BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
  229. *
  230. * Factorize the matrices A and B in the arrays AF and BF.
  231. *
  232. CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
  233. $ LWORK, INFO )
  234. *
  235. * Generate the N-by-N matrix Q
  236. *
  237. CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
  238. IF( M.LE.N ) THEN
  239. IF( M.GT.0 .AND. M.LT.N )
  240. $ CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
  241. IF( M.GT.1 )
  242. $ CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
  243. $ Q( N-M+2, N-M+1 ), LDA )
  244. ELSE
  245. IF( N.GT.1 )
  246. $ CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
  247. $ Q( 2, 1 ), LDA )
  248. END IF
  249. CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
  250. *
  251. * Generate the P-by-P matrix Z
  252. *
  253. CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
  254. IF( P.GT.1 )
  255. $ CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
  256. CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
  257. *
  258. * Copy R
  259. *
  260. CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
  261. IF( M.LE.N )THEN
  262. CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
  263. $ LDA )
  264. ELSE
  265. CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
  266. CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
  267. $ LDA )
  268. END IF
  269. *
  270. * Copy T
  271. *
  272. CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB )
  273. CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB )
  274. *
  275. * Compute R - A*Q'
  276. *
  277. CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
  278. $ LDA, ONE, R, LDA )
  279. *
  280. * Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
  281. *
  282. RESID = SLANGE( '1', M, N, R, LDA, RWORK )
  283. IF( ANORM.GT.ZERO ) THEN
  284. RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
  285. ELSE
  286. RESULT( 1 ) = ZERO
  287. END IF
  288. *
  289. * Compute T*Q - Z'*B
  290. *
  291. CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B,
  292. $ LDB, ZERO, BWK, LDB )
  293. CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB,
  294. $ Q, LDA, -ONE, BWK, LDB )
  295. *
  296. * Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
  297. *
  298. RESID = SLANGE( '1', P, N, BWK, LDB, RWORK )
  299. IF( BNORM.GT.ZERO ) THEN
  300. RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
  301. ELSE
  302. RESULT( 2 ) = ZERO
  303. END IF
  304. *
  305. * Compute I - Q*Q'
  306. *
  307. CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
  308. CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
  309. $ LDA )
  310. *
  311. * Compute norm( I - Q'*Q ) / ( N * ULP ) .
  312. *
  313. RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
  314. RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
  315. *
  316. * Compute I - Z'*Z
  317. *
  318. CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
  319. CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
  320. $ LDB )
  321. *
  322. * Compute norm( I - Z'*Z ) / ( P*ULP ) .
  323. *
  324. RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
  325. RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
  326. *
  327. RETURN
  328. *
  329. * End of SGRQTS
  330. *
  331. END