|
- *> \brief \b SGQRTS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
- * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LWORK, M, P, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
- * $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
- * $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
- * $ TAUA( * ), TAUB( * ), RESULT( 4 ),
- * $ RWORK( * ), WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGQRTS tests SGGQRF, which computes the GQR factorization of an
- *> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of columns of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,M)
- *> The N-by-M matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is REAL array, dimension (LDA,N)
- *> Details of the GQR factorization of A and B, as returned
- *> by SGGQRF, see SGGQRF for further details.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is REAL array, dimension (LDA,N)
- *> The M-by-M orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is REAL array, dimension (LDA,MAX(M,N))
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, R and Q.
- *> LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[out] TAUA
- *> \verbatim
- *> TAUA is REAL array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by SGGQRF.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,P)
- *> On entry, the N-by-P matrix A.
- *> \endverbatim
- *>
- *> \param[out] BF
- *> \verbatim
- *> BF is REAL array, dimension (LDB,N)
- *> Details of the GQR factorization of A and B, as returned
- *> by SGGQRF, see SGGQRF for further details.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDB,P)
- *> The P-by-P orthogonal matrix Z.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is REAL array, dimension (LDB,max(P,N))
- *> \endverbatim
- *>
- *> \param[out] BWK
- *> \verbatim
- *> BWK is REAL array, dimension (LDB,N)
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the arrays B, BF, Z and T.
- *> LDB >= max(P,N).
- *> \endverbatim
- *>
- *> \param[out] TAUB
- *> \verbatim
- *> TAUB is REAL array, dimension (min(P,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by SGGRQF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK, LWORK >= max(N,M,P)**2.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (max(N,M,P))
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (4)
- *> The test ratios:
- *> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
- *> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
- *> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
- *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
- $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LWORK, M, P, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
- $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
- $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
- $ TAUA( * ), TAUB( * ), RESULT( 4 ),
- $ RWORK( * ), WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- REAL ROGUE
- PARAMETER ( ROGUE = -1.0E+10 )
- * ..
- * .. Local Scalars ..
- INTEGER INFO
- REAL ANORM, BNORM, ULP, UNFL, RESID
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SLACPY, SLASET, SORGQR,
- $ SORGRQ, SSYRK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- ULP = SLAMCH( 'Precision' )
- UNFL = SLAMCH( 'Safe minimum' )
- *
- * Copy the matrix A to the array AF.
- *
- CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
- CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
- *
- ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
- BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
- *
- * Factorize the matrices A and B in the arrays AF and BF.
- *
- CALL SGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
- $ LWORK, INFO )
- *
- * Generate the N-by-N matrix Q
- *
- CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
- CALL SLACPY( 'Lower', N-1, M, AF( 2,1 ), LDA, Q( 2,1 ), LDA )
- CALL SORGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
- *
- * Generate the P-by-P matrix Z
- *
- CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
- IF( N.LE.P ) THEN
- IF( N.GT.0 .AND. N.LT.P )
- $ CALL SLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
- IF( N.GT.1 )
- $ CALL SLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
- $ Z( P-N+2, P-N+1 ), LDB )
- ELSE
- IF( P.GT.1)
- $ CALL SLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
- $ Z( 2, 1 ), LDB )
- END IF
- CALL SORGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
- *
- * Copy R
- *
- CALL SLASET( 'Full', N, M, ZERO, ZERO, R, LDA )
- CALL SLACPY( 'Upper', N, M, AF, LDA, R, LDA )
- *
- * Copy T
- *
- CALL SLASET( 'Full', N, P, ZERO, ZERO, T, LDB )
- IF( N.LE.P ) THEN
- CALL SLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
- $ LDB )
- ELSE
- CALL SLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
- CALL SLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
- $ LDB )
- END IF
- *
- * Compute R - Q'*A
- *
- CALL SGEMM( 'Transpose', 'No transpose', N, M, N, -ONE, Q, LDA, A,
- $ LDA, ONE, R, LDA )
- *
- * Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
- *
- RESID = SLANGE( '1', N, M, R, LDA, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / REAL( MAX(1,M,N) ) ) / ANORM ) / ULP
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute T*Z - Q'*B
- *
- CALL SGEMM( 'No Transpose', 'No transpose', N, P, P, ONE, T, LDB,
- $ Z, LDB, ZERO, BWK, LDB )
- CALL SGEMM( 'Transpose', 'No transpose', N, P, N, -ONE, Q, LDA,
- $ B, LDB, ONE, BWK, LDB )
- *
- * Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
- *
- RESID = SLANGE( '1', N, P, BWK, LDB, RWORK )
- IF( BNORM.GT.ZERO ) THEN
- RESULT( 2 ) = ( ( RESID / REAL( MAX(1,P,N ) ) )/BNORM ) / ULP
- ELSE
- RESULT( 2 ) = ZERO
- END IF
- *
- * Compute I - Q'*Q
- *
- CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
- CALL SSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDA, ONE, R,
- $ LDA )
- *
- * Compute norm( I - Q'*Q ) / ( N * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
- RESULT( 3 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP
- *
- * Compute I - Z'*Z
- *
- CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
- CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
- $ LDB )
- *
- * Compute norm( I - Z'*Z ) / ( P*ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
- RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP
- *
- RETURN
- *
- * End of SGQRTS
- *
- END
|