You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgqrts.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. *> \brief \b SGQRTS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
  12. * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDB, LWORK, M, P, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
  19. * $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
  20. * $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
  21. * $ TAUA( * ), TAUB( * ), RESULT( 4 ),
  22. * $ RWORK( * ), WORK( LWORK )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> SGQRTS tests SGGQRF, which computes the GQR factorization of an
  32. *> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] N
  39. *> \verbatim
  40. *> N is INTEGER
  41. *> The number of rows of the matrices A and B. N >= 0.
  42. *> \endverbatim
  43. *>
  44. *> \param[in] M
  45. *> \verbatim
  46. *> M is INTEGER
  47. *> The number of columns of the matrix A. M >= 0.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] P
  51. *> \verbatim
  52. *> P is INTEGER
  53. *> The number of columns of the matrix B. P >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] A
  57. *> \verbatim
  58. *> A is REAL array, dimension (LDA,M)
  59. *> The N-by-M matrix A.
  60. *> \endverbatim
  61. *>
  62. *> \param[out] AF
  63. *> \verbatim
  64. *> AF is REAL array, dimension (LDA,N)
  65. *> Details of the GQR factorization of A and B, as returned
  66. *> by SGGQRF, see SGGQRF for further details.
  67. *> \endverbatim
  68. *>
  69. *> \param[out] Q
  70. *> \verbatim
  71. *> Q is REAL array, dimension (LDA,N)
  72. *> The M-by-M orthogonal matrix Q.
  73. *> \endverbatim
  74. *>
  75. *> \param[out] R
  76. *> \verbatim
  77. *> R is REAL array, dimension (LDA,MAX(M,N))
  78. *> \endverbatim
  79. *>
  80. *> \param[in] LDA
  81. *> \verbatim
  82. *> LDA is INTEGER
  83. *> The leading dimension of the arrays A, AF, R and Q.
  84. *> LDA >= max(M,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] TAUA
  88. *> \verbatim
  89. *> TAUA is REAL array, dimension (min(M,N))
  90. *> The scalar factors of the elementary reflectors, as returned
  91. *> by SGGQRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] B
  95. *> \verbatim
  96. *> B is REAL array, dimension (LDB,P)
  97. *> On entry, the N-by-P matrix A.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] BF
  101. *> \verbatim
  102. *> BF is REAL array, dimension (LDB,N)
  103. *> Details of the GQR factorization of A and B, as returned
  104. *> by SGGQRF, see SGGQRF for further details.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] Z
  108. *> \verbatim
  109. *> Z is REAL array, dimension (LDB,P)
  110. *> The P-by-P orthogonal matrix Z.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] T
  114. *> \verbatim
  115. *> T is REAL array, dimension (LDB,max(P,N))
  116. *> \endverbatim
  117. *>
  118. *> \param[out] BWK
  119. *> \verbatim
  120. *> BWK is REAL array, dimension (LDB,N)
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDB
  124. *> \verbatim
  125. *> LDB is INTEGER
  126. *> The leading dimension of the arrays B, BF, Z and T.
  127. *> LDB >= max(P,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] TAUB
  131. *> \verbatim
  132. *> TAUB is REAL array, dimension (min(P,N))
  133. *> The scalar factors of the elementary reflectors, as returned
  134. *> by SGGRQF.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> WORK is REAL array, dimension (LWORK)
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LWORK
  143. *> \verbatim
  144. *> LWORK is INTEGER
  145. *> The dimension of the array WORK, LWORK >= max(N,M,P)**2.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] RWORK
  149. *> \verbatim
  150. *> RWORK is REAL array, dimension (max(N,M,P))
  151. *> \endverbatim
  152. *>
  153. *> \param[out] RESULT
  154. *> \verbatim
  155. *> RESULT is REAL array, dimension (4)
  156. *> The test ratios:
  157. *> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
  158. *> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
  159. *> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
  160. *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
  161. *> \endverbatim
  162. *
  163. * Authors:
  164. * ========
  165. *
  166. *> \author Univ. of Tennessee
  167. *> \author Univ. of California Berkeley
  168. *> \author Univ. of Colorado Denver
  169. *> \author NAG Ltd.
  170. *
  171. *> \ingroup single_eig
  172. *
  173. * =====================================================================
  174. SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
  175. $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
  176. *
  177. * -- LAPACK test routine --
  178. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  179. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180. *
  181. * .. Scalar Arguments ..
  182. INTEGER LDA, LDB, LWORK, M, P, N
  183. * ..
  184. * .. Array Arguments ..
  185. REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
  186. $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
  187. $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
  188. $ TAUA( * ), TAUB( * ), RESULT( 4 ),
  189. $ RWORK( * ), WORK( LWORK )
  190. * ..
  191. *
  192. * =====================================================================
  193. *
  194. * .. Parameters ..
  195. REAL ZERO, ONE
  196. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  197. REAL ROGUE
  198. PARAMETER ( ROGUE = -1.0E+10 )
  199. * ..
  200. * .. Local Scalars ..
  201. INTEGER INFO
  202. REAL ANORM, BNORM, ULP, UNFL, RESID
  203. * ..
  204. * .. External Functions ..
  205. REAL SLAMCH, SLANGE, SLANSY
  206. EXTERNAL SLAMCH, SLANGE, SLANSY
  207. * ..
  208. * .. External Subroutines ..
  209. EXTERNAL SGEMM, SLACPY, SLASET, SORGQR,
  210. $ SORGRQ, SSYRK
  211. * ..
  212. * .. Intrinsic Functions ..
  213. INTRINSIC MAX, MIN, REAL
  214. * ..
  215. * .. Executable Statements ..
  216. *
  217. ULP = SLAMCH( 'Precision' )
  218. UNFL = SLAMCH( 'Safe minimum' )
  219. *
  220. * Copy the matrix A to the array AF.
  221. *
  222. CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
  223. CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
  224. *
  225. ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
  226. BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
  227. *
  228. * Factorize the matrices A and B in the arrays AF and BF.
  229. *
  230. CALL SGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
  231. $ LWORK, INFO )
  232. *
  233. * Generate the N-by-N matrix Q
  234. *
  235. CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
  236. CALL SLACPY( 'Lower', N-1, M, AF( 2,1 ), LDA, Q( 2,1 ), LDA )
  237. CALL SORGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
  238. *
  239. * Generate the P-by-P matrix Z
  240. *
  241. CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
  242. IF( N.LE.P ) THEN
  243. IF( N.GT.0 .AND. N.LT.P )
  244. $ CALL SLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
  245. IF( N.GT.1 )
  246. $ CALL SLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
  247. $ Z( P-N+2, P-N+1 ), LDB )
  248. ELSE
  249. IF( P.GT.1)
  250. $ CALL SLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
  251. $ Z( 2, 1 ), LDB )
  252. END IF
  253. CALL SORGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
  254. *
  255. * Copy R
  256. *
  257. CALL SLASET( 'Full', N, M, ZERO, ZERO, R, LDA )
  258. CALL SLACPY( 'Upper', N, M, AF, LDA, R, LDA )
  259. *
  260. * Copy T
  261. *
  262. CALL SLASET( 'Full', N, P, ZERO, ZERO, T, LDB )
  263. IF( N.LE.P ) THEN
  264. CALL SLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
  265. $ LDB )
  266. ELSE
  267. CALL SLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
  268. CALL SLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
  269. $ LDB )
  270. END IF
  271. *
  272. * Compute R - Q'*A
  273. *
  274. CALL SGEMM( 'Transpose', 'No transpose', N, M, N, -ONE, Q, LDA, A,
  275. $ LDA, ONE, R, LDA )
  276. *
  277. * Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
  278. *
  279. RESID = SLANGE( '1', N, M, R, LDA, RWORK )
  280. IF( ANORM.GT.ZERO ) THEN
  281. RESULT( 1 ) = ( ( RESID / REAL( MAX(1,M,N) ) ) / ANORM ) / ULP
  282. ELSE
  283. RESULT( 1 ) = ZERO
  284. END IF
  285. *
  286. * Compute T*Z - Q'*B
  287. *
  288. CALL SGEMM( 'No Transpose', 'No transpose', N, P, P, ONE, T, LDB,
  289. $ Z, LDB, ZERO, BWK, LDB )
  290. CALL SGEMM( 'Transpose', 'No transpose', N, P, N, -ONE, Q, LDA,
  291. $ B, LDB, ONE, BWK, LDB )
  292. *
  293. * Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
  294. *
  295. RESID = SLANGE( '1', N, P, BWK, LDB, RWORK )
  296. IF( BNORM.GT.ZERO ) THEN
  297. RESULT( 2 ) = ( ( RESID / REAL( MAX(1,P,N ) ) )/BNORM ) / ULP
  298. ELSE
  299. RESULT( 2 ) = ZERO
  300. END IF
  301. *
  302. * Compute I - Q'*Q
  303. *
  304. CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
  305. CALL SSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDA, ONE, R,
  306. $ LDA )
  307. *
  308. * Compute norm( I - Q'*Q ) / ( N * ULP ) .
  309. *
  310. RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
  311. RESULT( 3 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP
  312. *
  313. * Compute I - Z'*Z
  314. *
  315. CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
  316. CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
  317. $ LDB )
  318. *
  319. * Compute norm( I - Z'*Z ) / ( P*ULP ) .
  320. *
  321. RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
  322. RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP
  323. *
  324. RETURN
  325. *
  326. * End of SGQRTS
  327. *
  328. END