|
- *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGELS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGELS solves overdetermined or underdetermined complex linear systems
- *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
- *> or LQ factorization of A. It is assumed that A has full rank.
- *>
- *> The following options are provided:
- *>
- *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
- *> an overdetermined system, i.e., solve the least squares problem
- *> minimize || B - A*X ||.
- *>
- *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
- *> an underdetermined system A * X = B.
- *>
- *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
- *> an underdetermined system A**H * X = B.
- *>
- *> 4. If TRANS = 'C' and m < n: find the least squares solution of
- *> an overdetermined system, i.e., solve the least squares problem
- *> minimize || B - A**H * X ||.
- *>
- *> Several right hand side vectors b and solution vectors x can be
- *> handled in a single call; they are stored as the columns of the
- *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
- *> matrix X.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': the linear system involves A;
- *> = 'C': the linear system involves A**H.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of
- *> columns of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> if M >= N, A is overwritten by details of its QR
- *> factorization as returned by ZGEQRF;
- *> if M < N, A is overwritten by details of its LQ
- *> factorization as returned by ZGELQF.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> On entry, the matrix B of right hand side vectors, stored
- *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
- *> if TRANS = 'C'.
- *> On exit, if INFO = 0, B is overwritten by the solution
- *> vectors, stored columnwise:
- *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
- *> squares solution vectors; the residual sum of squares for the
- *> solution in each column is given by the sum of squares of the
- *> modulus of elements N+1 to M in that column;
- *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
- *> minimum norm solution vectors;
- *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
- *> minimum norm solution vectors;
- *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
- *> least squares solution vectors; the residual sum of squares
- *> for the solution in each column is given by the sum of
- *> squares of the modulus of elements M+1 to N in that column.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= MAX(1,M,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> LWORK >= max( 1, MN + max( MN, NRHS ) ).
- *> For optimal performance,
- *> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
- *> where MN = min(M,N) and NB is the optimum block size.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the i-th diagonal element of the
- *> triangular factor of A is zero, so that A does not have
- *> full rank; the least squares solution could not be
- *> computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16GEsolve
- *
- * =====================================================================
- SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CZERO
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, TPSD
- INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
- DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION RWORK( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, ZLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
- $ ZTRTRS, ZUNMLQ, ZUNMQR
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments.
- *
- INFO = 0
- MN = MIN( M, N )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
- INFO = -1
- ELSE IF( M.LT.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
- $ THEN
- INFO = -10
- END IF
- *
- * Figure out optimal block size
- *
- IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
- *
- TPSD = .TRUE.
- IF( LSAME( TRANS, 'N' ) )
- $ TPSD = .FALSE.
- *
- IF( M.GE.N ) THEN
- NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
- IF( TPSD ) THEN
- NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
- $ -1 ) )
- ELSE
- NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
- $ -1 ) )
- END IF
- ELSE
- NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
- IF( TPSD ) THEN
- NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
- $ -1 ) )
- ELSE
- NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
- $ -1 ) )
- END IF
- END IF
- *
- WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
- WORK( 1 ) = DBLE( WSIZE )
- *
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGELS ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( MIN( M, N, NRHS ).EQ.0 ) THEN
- CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
- RETURN
- END IF
- *
- * Get machine parameters
- *
- SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- *
- * Scale A, B if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
- IASCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
- IASCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
- IASCL = 2
- ELSE IF( ANRM.EQ.ZERO ) THEN
- *
- * Matrix all zero. Return zero solution.
- *
- CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
- GO TO 50
- END IF
- *
- BROW = M
- IF( TPSD )
- $ BROW = N
- BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
- IBSCL = 0
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
- $ INFO )
- IBSCL = 1
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
- $ INFO )
- IBSCL = 2
- END IF
- *
- IF( M.GE.N ) THEN
- *
- * compute QR factorization of A
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
- $ INFO )
- *
- * workspace at least N, optimally N*NB
- *
- IF( .NOT.TPSD ) THEN
- *
- * Least-Squares Problem min || A * X - B ||
- *
- * B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
- *
- CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
- $ LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
- $ INFO )
- *
- * workspace at least NRHS, optimally NRHS*NB
- *
- * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
- *
- CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
- $ A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- SCLLEN = N
- *
- ELSE
- *
- * Underdetermined system of equations A**T * X = B
- *
- * B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
- *
- CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
- $ N, NRHS, A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- * B(N+1:M,1:NRHS) = ZERO
- *
- DO 20 J = 1, NRHS
- DO 10 I = N + 1, M
- B( I, J ) = CZERO
- 10 CONTINUE
- 20 CONTINUE
- *
- * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
- *
- CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
- $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
- $ INFO )
- *
- * workspace at least NRHS, optimally NRHS*NB
- *
- SCLLEN = M
- *
- END IF
- *
- ELSE
- *
- * Compute LQ factorization of A
- *
- CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
- $ INFO )
- *
- * workspace at least M, optimally M*NB.
- *
- IF( .NOT.TPSD ) THEN
- *
- * underdetermined system of equations A * X = B
- *
- * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
- *
- CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
- $ A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- * B(M+1:N,1:NRHS) = 0
- *
- DO 40 J = 1, NRHS
- DO 30 I = M + 1, N
- B( I, J ) = CZERO
- 30 CONTINUE
- 40 CONTINUE
- *
- * B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
- *
- CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
- $ LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
- $ INFO )
- *
- * workspace at least NRHS, optimally NRHS*NB
- *
- SCLLEN = N
- *
- ELSE
- *
- * overdetermined system min || A**H * X - B ||
- *
- * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
- *
- CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
- $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
- $ INFO )
- *
- * workspace at least NRHS, optimally NRHS*NB
- *
- * B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
- *
- CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
- $ M, NRHS, A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- SCLLEN = M
- *
- END IF
- *
- END IF
- *
- * Undo scaling
- *
- IF( IASCL.EQ.1 ) THEN
- CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- ELSE IF( IASCL.EQ.2 ) THEN
- CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- END IF
- IF( IBSCL.EQ.1 ) THEN
- CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- ELSE IF( IBSCL.EQ.2 ) THEN
- CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- END IF
- *
- 50 CONTINUE
- WORK( 1 ) = DBLE( WSIZE )
- *
- RETURN
- *
- * End of ZGELS
- *
- END
|