You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgels.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGELS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZGELS solves overdetermined or underdetermined complex linear systems
  39. *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
  40. *> or LQ factorization of A. It is assumed that A has full rank.
  41. *>
  42. *> The following options are provided:
  43. *>
  44. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  45. *> an overdetermined system, i.e., solve the least squares problem
  46. *> minimize || B - A*X ||.
  47. *>
  48. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  49. *> an underdetermined system A * X = B.
  50. *>
  51. *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
  52. *> an underdetermined system A**H * X = B.
  53. *>
  54. *> 4. If TRANS = 'C' and m < n: find the least squares solution of
  55. *> an overdetermined system, i.e., solve the least squares problem
  56. *> minimize || B - A**H * X ||.
  57. *>
  58. *> Several right hand side vectors b and solution vectors x can be
  59. *> handled in a single call; they are stored as the columns of the
  60. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  61. *> matrix X.
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': the linear system involves A;
  71. *> = 'C': the linear system involves A**H.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix A. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix A. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] NRHS
  87. *> \verbatim
  88. *> NRHS is INTEGER
  89. *> The number of right hand sides, i.e., the number of
  90. *> columns of the matrices B and X. NRHS >= 0.
  91. *> \endverbatim
  92. *>
  93. *> \param[in,out] A
  94. *> \verbatim
  95. *> A is COMPLEX*16 array, dimension (LDA,N)
  96. *> On entry, the M-by-N matrix A.
  97. *> if M >= N, A is overwritten by details of its QR
  98. *> factorization as returned by ZGEQRF;
  99. *> if M < N, A is overwritten by details of its LQ
  100. *> factorization as returned by ZGELQF.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> The leading dimension of the array A. LDA >= max(1,M).
  107. *> \endverbatim
  108. *>
  109. *> \param[in,out] B
  110. *> \verbatim
  111. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  112. *> On entry, the matrix B of right hand side vectors, stored
  113. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  114. *> if TRANS = 'C'.
  115. *> On exit, if INFO = 0, B is overwritten by the solution
  116. *> vectors, stored columnwise:
  117. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  118. *> squares solution vectors; the residual sum of squares for the
  119. *> solution in each column is given by the sum of squares of the
  120. *> modulus of elements N+1 to M in that column;
  121. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  122. *> minimum norm solution vectors;
  123. *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  124. *> minimum norm solution vectors;
  125. *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
  126. *> least squares solution vectors; the residual sum of squares
  127. *> for the solution in each column is given by the sum of
  128. *> squares of the modulus of elements M+1 to N in that column.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDB
  132. *> \verbatim
  133. *> LDB is INTEGER
  134. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  140. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  141. *> \endverbatim
  142. *>
  143. *> \param[in] LWORK
  144. *> \verbatim
  145. *> LWORK is INTEGER
  146. *> The dimension of the array WORK.
  147. *> LWORK >= max( 1, MN + max( MN, NRHS ) ).
  148. *> For optimal performance,
  149. *> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
  150. *> where MN = min(M,N) and NB is the optimum block size.
  151. *>
  152. *> If LWORK = -1, then a workspace query is assumed; the routine
  153. *> only calculates the optimal size of the WORK array, returns
  154. *> this value as the first entry of the WORK array, and no error
  155. *> message related to LWORK is issued by XERBLA.
  156. *> \endverbatim
  157. *>
  158. *> \param[out] INFO
  159. *> \verbatim
  160. *> INFO is INTEGER
  161. *> = 0: successful exit
  162. *> < 0: if INFO = -i, the i-th argument had an illegal value
  163. *> > 0: if INFO = i, the i-th diagonal element of the
  164. *> triangular factor of A is zero, so that A does not have
  165. *> full rank; the least squares solution could not be
  166. *> computed.
  167. *> \endverbatim
  168. *
  169. * Authors:
  170. * ========
  171. *
  172. *> \author Univ. of Tennessee
  173. *> \author Univ. of California Berkeley
  174. *> \author Univ. of Colorado Denver
  175. *> \author NAG Ltd.
  176. *
  177. *> \date December 2016
  178. *
  179. *> \ingroup complex16GEsolve
  180. *
  181. * =====================================================================
  182. SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  183. $ INFO )
  184. *
  185. * -- LAPACK driver routine (version 3.7.0) --
  186. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  187. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188. * December 2016
  189. *
  190. * .. Scalar Arguments ..
  191. CHARACTER TRANS
  192. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  193. * ..
  194. * .. Array Arguments ..
  195. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  196. * ..
  197. *
  198. * =====================================================================
  199. *
  200. * .. Parameters ..
  201. DOUBLE PRECISION ZERO, ONE
  202. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  203. COMPLEX*16 CZERO
  204. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  205. * ..
  206. * .. Local Scalars ..
  207. LOGICAL LQUERY, TPSD
  208. INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
  209. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
  210. * ..
  211. * .. Local Arrays ..
  212. DOUBLE PRECISION RWORK( 1 )
  213. * ..
  214. * .. External Functions ..
  215. LOGICAL LSAME
  216. INTEGER ILAENV
  217. DOUBLE PRECISION DLAMCH, ZLANGE
  218. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  219. * ..
  220. * .. External Subroutines ..
  221. EXTERNAL DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
  222. $ ZTRTRS, ZUNMLQ, ZUNMQR
  223. * ..
  224. * .. Intrinsic Functions ..
  225. INTRINSIC DBLE, MAX, MIN
  226. * ..
  227. * .. Executable Statements ..
  228. *
  229. * Test the input arguments.
  230. *
  231. INFO = 0
  232. MN = MIN( M, N )
  233. LQUERY = ( LWORK.EQ.-1 )
  234. IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
  235. INFO = -1
  236. ELSE IF( M.LT.0 ) THEN
  237. INFO = -2
  238. ELSE IF( N.LT.0 ) THEN
  239. INFO = -3
  240. ELSE IF( NRHS.LT.0 ) THEN
  241. INFO = -4
  242. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  243. INFO = -6
  244. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  245. INFO = -8
  246. ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  247. $ THEN
  248. INFO = -10
  249. END IF
  250. *
  251. * Figure out optimal block size
  252. *
  253. IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  254. *
  255. TPSD = .TRUE.
  256. IF( LSAME( TRANS, 'N' ) )
  257. $ TPSD = .FALSE.
  258. *
  259. IF( M.GE.N ) THEN
  260. NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  261. IF( TPSD ) THEN
  262. NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
  263. $ -1 ) )
  264. ELSE
  265. NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
  266. $ -1 ) )
  267. END IF
  268. ELSE
  269. NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  270. IF( TPSD ) THEN
  271. NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
  272. $ -1 ) )
  273. ELSE
  274. NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
  275. $ -1 ) )
  276. END IF
  277. END IF
  278. *
  279. WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
  280. WORK( 1 ) = DBLE( WSIZE )
  281. *
  282. END IF
  283. *
  284. IF( INFO.NE.0 ) THEN
  285. CALL XERBLA( 'ZGELS ', -INFO )
  286. RETURN
  287. ELSE IF( LQUERY ) THEN
  288. RETURN
  289. END IF
  290. *
  291. * Quick return if possible
  292. *
  293. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  294. CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  295. RETURN
  296. END IF
  297. *
  298. * Get machine parameters
  299. *
  300. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  301. BIGNUM = ONE / SMLNUM
  302. CALL DLABAD( SMLNUM, BIGNUM )
  303. *
  304. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  305. *
  306. ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  307. IASCL = 0
  308. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  309. *
  310. * Scale matrix norm up to SMLNUM
  311. *
  312. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  313. IASCL = 1
  314. ELSE IF( ANRM.GT.BIGNUM ) THEN
  315. *
  316. * Scale matrix norm down to BIGNUM
  317. *
  318. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  319. IASCL = 2
  320. ELSE IF( ANRM.EQ.ZERO ) THEN
  321. *
  322. * Matrix all zero. Return zero solution.
  323. *
  324. CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  325. GO TO 50
  326. END IF
  327. *
  328. BROW = M
  329. IF( TPSD )
  330. $ BROW = N
  331. BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  332. IBSCL = 0
  333. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  334. *
  335. * Scale matrix norm up to SMLNUM
  336. *
  337. CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  338. $ INFO )
  339. IBSCL = 1
  340. ELSE IF( BNRM.GT.BIGNUM ) THEN
  341. *
  342. * Scale matrix norm down to BIGNUM
  343. *
  344. CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  345. $ INFO )
  346. IBSCL = 2
  347. END IF
  348. *
  349. IF( M.GE.N ) THEN
  350. *
  351. * compute QR factorization of A
  352. *
  353. CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  354. $ INFO )
  355. *
  356. * workspace at least N, optimally N*NB
  357. *
  358. IF( .NOT.TPSD ) THEN
  359. *
  360. * Least-Squares Problem min || A * X - B ||
  361. *
  362. * B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  363. *
  364. CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
  365. $ LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  366. $ INFO )
  367. *
  368. * workspace at least NRHS, optimally NRHS*NB
  369. *
  370. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  371. *
  372. CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  373. $ A, LDA, B, LDB, INFO )
  374. *
  375. IF( INFO.GT.0 ) THEN
  376. RETURN
  377. END IF
  378. *
  379. SCLLEN = N
  380. *
  381. ELSE
  382. *
  383. * Underdetermined system of equations A**T * X = B
  384. *
  385. * B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
  386. *
  387. CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
  388. $ N, NRHS, A, LDA, B, LDB, INFO )
  389. *
  390. IF( INFO.GT.0 ) THEN
  391. RETURN
  392. END IF
  393. *
  394. * B(N+1:M,1:NRHS) = ZERO
  395. *
  396. DO 20 J = 1, NRHS
  397. DO 10 I = N + 1, M
  398. B( I, J ) = CZERO
  399. 10 CONTINUE
  400. 20 CONTINUE
  401. *
  402. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  403. *
  404. CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
  405. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  406. $ INFO )
  407. *
  408. * workspace at least NRHS, optimally NRHS*NB
  409. *
  410. SCLLEN = M
  411. *
  412. END IF
  413. *
  414. ELSE
  415. *
  416. * Compute LQ factorization of A
  417. *
  418. CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  419. $ INFO )
  420. *
  421. * workspace at least M, optimally M*NB.
  422. *
  423. IF( .NOT.TPSD ) THEN
  424. *
  425. * underdetermined system of equations A * X = B
  426. *
  427. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  428. *
  429. CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  430. $ A, LDA, B, LDB, INFO )
  431. *
  432. IF( INFO.GT.0 ) THEN
  433. RETURN
  434. END IF
  435. *
  436. * B(M+1:N,1:NRHS) = 0
  437. *
  438. DO 40 J = 1, NRHS
  439. DO 30 I = M + 1, N
  440. B( I, J ) = CZERO
  441. 30 CONTINUE
  442. 40 CONTINUE
  443. *
  444. * B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
  445. *
  446. CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
  447. $ LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  448. $ INFO )
  449. *
  450. * workspace at least NRHS, optimally NRHS*NB
  451. *
  452. SCLLEN = N
  453. *
  454. ELSE
  455. *
  456. * overdetermined system min || A**H * X - B ||
  457. *
  458. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  459. *
  460. CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
  461. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  462. $ INFO )
  463. *
  464. * workspace at least NRHS, optimally NRHS*NB
  465. *
  466. * B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
  467. *
  468. CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
  469. $ M, NRHS, A, LDA, B, LDB, INFO )
  470. *
  471. IF( INFO.GT.0 ) THEN
  472. RETURN
  473. END IF
  474. *
  475. SCLLEN = M
  476. *
  477. END IF
  478. *
  479. END IF
  480. *
  481. * Undo scaling
  482. *
  483. IF( IASCL.EQ.1 ) THEN
  484. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  485. $ INFO )
  486. ELSE IF( IASCL.EQ.2 ) THEN
  487. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  488. $ INFO )
  489. END IF
  490. IF( IBSCL.EQ.1 ) THEN
  491. CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  492. $ INFO )
  493. ELSE IF( IBSCL.EQ.2 ) THEN
  494. CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  495. $ INFO )
  496. END IF
  497. *
  498. 50 CONTINUE
  499. WORK( 1 ) = DBLE( WSIZE )
  500. *
  501. RETURN
  502. *
  503. * End of ZGELS
  504. *
  505. END