|
- *> \brief \b SSYTRS_ROOK
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSYTRS_ROOK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrs_rook.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrs_rook.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrs_rook.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSYTRS_ROOK solves a system of linear equations A*X = B with
- *> a real symmetric matrix A using the factorization A = U*D*U**T or
- *> A = L*D*L**T computed by SSYTRF_ROOK.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U*D*U**T;
- *> = 'L': Lower triangular, form is A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The block diagonal matrix D and the multipliers used to
- *> obtain the factor U or L as computed by SSYTRF_ROOK.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by SSYTRF_ROOK.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup realSYcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> April 2012, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE SSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, K, KP
- REAL AK, AKM1, AKM1K, BK, BKM1, DENOM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMV, SGER, SSCAL, SSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSYTRS_ROOK', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Solve A*X = B, where A = U*D*U**T.
- *
- * First solve U*D*X = B, overwriting B with X.
- *
- * K is the main loop index, decreasing from N to 1 in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = N
- 10 CONTINUE
- *
- * If K < 1, exit from loop.
- *
- IF( K.LT.1 )
- $ GO TO 30
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Interchange rows K and IPIV(K).
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Multiply by inv(U(K)), where U(K) is the transformation
- * stored in column K of A.
- *
- CALL SGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
- $ B( 1, 1 ), LDB )
- *
- * Multiply by the inverse of the diagonal block.
- *
- CALL SSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
- K = K - 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
- *
- KP = -IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- KP = -IPIV( K-1 )
- IF( KP.NE.K-1 )
- $ CALL SSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Multiply by inv(U(K)), where U(K) is the transformation
- * stored in columns K-1 and K of A.
- *
- IF( K.GT.2 ) THEN
- CALL SGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- CALL SGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- END IF
- *
- * Multiply by the inverse of the diagonal block.
- *
- AKM1K = A( K-1, K )
- AKM1 = A( K-1, K-1 ) / AKM1K
- AK = A( K, K ) / AKM1K
- DENOM = AKM1*AK - ONE
- DO 20 J = 1, NRHS
- BKM1 = B( K-1, J ) / AKM1K
- BK = B( K, J ) / AKM1K
- B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
- B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
- 20 CONTINUE
- K = K - 2
- END IF
- *
- GO TO 10
- 30 CONTINUE
- *
- * Next solve U**T *X = B, overwriting B with X.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = 1
- 40 CONTINUE
- *
- * If K > N, exit from loop.
- *
- IF( K.GT.N )
- $ GO TO 50
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Multiply by inv(U**T(K)), where U(K) is the transformation
- * stored in column K of A.
- *
- IF( K.GT.1 )
- $ CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B,
- $ LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
- *
- * Interchange rows K and IPIV(K).
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K + 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
- * stored in columns K and K+1 of A.
- *
- IF( K.GT.1 ) THEN
- CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B,
- $ LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
- CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B,
- $ LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
- END IF
- *
- * Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1).
- *
- KP = -IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- KP = -IPIV( K+1 )
- IF( KP.NE.K+1 )
- $ CALL SSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
- *
- K = K + 2
- END IF
- *
- GO TO 40
- 50 CONTINUE
- *
- ELSE
- *
- * Solve A*X = B, where A = L*D*L**T.
- *
- * First solve L*D*X = B, overwriting B with X.
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = 1
- 60 CONTINUE
- *
- * If K > N, exit from loop.
- *
- IF( K.GT.N )
- $ GO TO 80
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Interchange rows K and IPIV(K).
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Multiply by inv(L(K)), where L(K) is the transformation
- * stored in column K of A.
- *
- IF( K.LT.N )
- $ CALL SGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
- $ LDB, B( K+1, 1 ), LDB )
- *
- * Multiply by the inverse of the diagonal block.
- *
- CALL SSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
- K = K + 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1)
- *
- KP = -IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- KP = -IPIV( K+1 )
- IF( KP.NE.K+1 )
- $ CALL SSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Multiply by inv(L(K)), where L(K) is the transformation
- * stored in columns K and K+1 of A.
- *
- IF( K.LT.N-1 ) THEN
- CALL SGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
- $ LDB, B( K+2, 1 ), LDB )
- CALL SGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
- $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
- END IF
- *
- * Multiply by the inverse of the diagonal block.
- *
- AKM1K = A( K+1, K )
- AKM1 = A( K, K ) / AKM1K
- AK = A( K+1, K+1 ) / AKM1K
- DENOM = AKM1*AK - ONE
- DO 70 J = 1, NRHS
- BKM1 = B( K, J ) / AKM1K
- BK = B( K+1, J ) / AKM1K
- B( K, J ) = ( AK*BKM1-BK ) / DENOM
- B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
- 70 CONTINUE
- K = K + 2
- END IF
- *
- GO TO 60
- 80 CONTINUE
- *
- * Next solve L**T *X = B, overwriting B with X.
- *
- * K is the main loop index, decreasing from N to 1 in steps of
- * 1 or 2, depending on the size of the diagonal blocks.
- *
- K = N
- 90 CONTINUE
- *
- * If K < 1, exit from loop.
- *
- IF( K.LT.1 )
- $ GO TO 100
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 diagonal block
- *
- * Multiply by inv(L**T(K)), where L(K) is the transformation
- * stored in column K of A.
- *
- IF( K.LT.N )
- $ CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
- $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
- *
- * Interchange rows K and IPIV(K).
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K - 1
- ELSE
- *
- * 2 x 2 diagonal block
- *
- * Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
- * stored in columns K-1 and K of A.
- *
- IF( K.LT.N ) THEN
- CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
- $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
- CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
- $ LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
- $ LDB )
- END IF
- *
- * Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
- *
- KP = -IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- KP = -IPIV( K-1 )
- IF( KP.NE.K-1 )
- $ CALL SSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
- *
- K = K - 2
- END IF
- *
- GO TO 90
- 100 CONTINUE
- END IF
- *
- RETURN
- *
- * End of SSYTRS_ROOK
- *
- END
|