You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrs_rook.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. *> \brief \b SSYTRS_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYTRS_ROOK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrs_rook.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrs_rook.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrs_rook.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * REAL A( LDA, * ), B( LDB, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SSYTRS_ROOK solves a system of linear equations A*X = B with
  39. *> a real symmetric matrix A using the factorization A = U*D*U**T or
  40. *> A = L*D*L**T computed by SSYTRF_ROOK.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] A
  69. *> \verbatim
  70. *> A is REAL array, dimension (LDA,N)
  71. *> The block diagonal matrix D and the multipliers used to
  72. *> obtain the factor U or L as computed by SSYTRF_ROOK.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges and the block structure of D
  85. *> as determined by SSYTRF_ROOK.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] B
  89. *> \verbatim
  90. *> B is REAL array, dimension (LDB,NRHS)
  91. *> On entry, the right hand side matrix B.
  92. *> On exit, the solution matrix X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] INFO
  102. *> \verbatim
  103. *> INFO is INTEGER
  104. *> = 0: successful exit
  105. *> < 0: if INFO = -i, the i-th argument had an illegal value
  106. *> \endverbatim
  107. *
  108. * Authors:
  109. * ========
  110. *
  111. *> \author Univ. of Tennessee
  112. *> \author Univ. of California Berkeley
  113. *> \author Univ. of Colorado Denver
  114. *> \author NAG Ltd.
  115. *
  116. *> \date April 2012
  117. *
  118. *> \ingroup realSYcomputational
  119. *
  120. *> \par Contributors:
  121. * ==================
  122. *>
  123. *> \verbatim
  124. *>
  125. *> April 2012, Igor Kozachenko,
  126. *> Computer Science Division,
  127. *> University of California, Berkeley
  128. *>
  129. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  130. *> School of Mathematics,
  131. *> University of Manchester
  132. *>
  133. *> \endverbatim
  134. *
  135. * =====================================================================
  136. SUBROUTINE SSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  137. $ INFO )
  138. *
  139. * -- LAPACK computational routine (version 3.7.0) --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. * April 2012
  143. *
  144. * .. Scalar Arguments ..
  145. CHARACTER UPLO
  146. INTEGER INFO, LDA, LDB, N, NRHS
  147. * ..
  148. * .. Array Arguments ..
  149. INTEGER IPIV( * )
  150. REAL A( LDA, * ), B( LDB, * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * .. Parameters ..
  156. REAL ONE
  157. PARAMETER ( ONE = 1.0E+0 )
  158. * ..
  159. * .. Local Scalars ..
  160. LOGICAL UPPER
  161. INTEGER J, K, KP
  162. REAL AK, AKM1, AKM1K, BK, BKM1, DENOM
  163. * ..
  164. * .. External Functions ..
  165. LOGICAL LSAME
  166. EXTERNAL LSAME
  167. * ..
  168. * .. External Subroutines ..
  169. EXTERNAL SGEMV, SGER, SSCAL, SSWAP, XERBLA
  170. * ..
  171. * .. Intrinsic Functions ..
  172. INTRINSIC MAX
  173. * ..
  174. * .. Executable Statements ..
  175. *
  176. INFO = 0
  177. UPPER = LSAME( UPLO, 'U' )
  178. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  179. INFO = -1
  180. ELSE IF( N.LT.0 ) THEN
  181. INFO = -2
  182. ELSE IF( NRHS.LT.0 ) THEN
  183. INFO = -3
  184. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  185. INFO = -5
  186. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  187. INFO = -8
  188. END IF
  189. IF( INFO.NE.0 ) THEN
  190. CALL XERBLA( 'SSYTRS_ROOK', -INFO )
  191. RETURN
  192. END IF
  193. *
  194. * Quick return if possible
  195. *
  196. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  197. $ RETURN
  198. *
  199. IF( UPPER ) THEN
  200. *
  201. * Solve A*X = B, where A = U*D*U**T.
  202. *
  203. * First solve U*D*X = B, overwriting B with X.
  204. *
  205. * K is the main loop index, decreasing from N to 1 in steps of
  206. * 1 or 2, depending on the size of the diagonal blocks.
  207. *
  208. K = N
  209. 10 CONTINUE
  210. *
  211. * If K < 1, exit from loop.
  212. *
  213. IF( K.LT.1 )
  214. $ GO TO 30
  215. *
  216. IF( IPIV( K ).GT.0 ) THEN
  217. *
  218. * 1 x 1 diagonal block
  219. *
  220. * Interchange rows K and IPIV(K).
  221. *
  222. KP = IPIV( K )
  223. IF( KP.NE.K )
  224. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  225. *
  226. * Multiply by inv(U(K)), where U(K) is the transformation
  227. * stored in column K of A.
  228. *
  229. CALL SGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  230. $ B( 1, 1 ), LDB )
  231. *
  232. * Multiply by the inverse of the diagonal block.
  233. *
  234. CALL SSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  235. K = K - 1
  236. ELSE
  237. *
  238. * 2 x 2 diagonal block
  239. *
  240. * Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
  241. *
  242. KP = -IPIV( K )
  243. IF( KP.NE.K )
  244. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  245. *
  246. KP = -IPIV( K-1 )
  247. IF( KP.NE.K-1 )
  248. $ CALL SSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  249. *
  250. * Multiply by inv(U(K)), where U(K) is the transformation
  251. * stored in columns K-1 and K of A.
  252. *
  253. IF( K.GT.2 ) THEN
  254. CALL SGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ),
  255. $ LDB, B( 1, 1 ), LDB )
  256. CALL SGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  257. $ LDB, B( 1, 1 ), LDB )
  258. END IF
  259. *
  260. * Multiply by the inverse of the diagonal block.
  261. *
  262. AKM1K = A( K-1, K )
  263. AKM1 = A( K-1, K-1 ) / AKM1K
  264. AK = A( K, K ) / AKM1K
  265. DENOM = AKM1*AK - ONE
  266. DO 20 J = 1, NRHS
  267. BKM1 = B( K-1, J ) / AKM1K
  268. BK = B( K, J ) / AKM1K
  269. B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  270. B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  271. 20 CONTINUE
  272. K = K - 2
  273. END IF
  274. *
  275. GO TO 10
  276. 30 CONTINUE
  277. *
  278. * Next solve U**T *X = B, overwriting B with X.
  279. *
  280. * K is the main loop index, increasing from 1 to N in steps of
  281. * 1 or 2, depending on the size of the diagonal blocks.
  282. *
  283. K = 1
  284. 40 CONTINUE
  285. *
  286. * If K > N, exit from loop.
  287. *
  288. IF( K.GT.N )
  289. $ GO TO 50
  290. *
  291. IF( IPIV( K ).GT.0 ) THEN
  292. *
  293. * 1 x 1 diagonal block
  294. *
  295. * Multiply by inv(U**T(K)), where U(K) is the transformation
  296. * stored in column K of A.
  297. *
  298. IF( K.GT.1 )
  299. $ CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B,
  300. $ LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  301. *
  302. * Interchange rows K and IPIV(K).
  303. *
  304. KP = IPIV( K )
  305. IF( KP.NE.K )
  306. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  307. K = K + 1
  308. ELSE
  309. *
  310. * 2 x 2 diagonal block
  311. *
  312. * Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  313. * stored in columns K and K+1 of A.
  314. *
  315. IF( K.GT.1 ) THEN
  316. CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B,
  317. $ LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
  318. CALL SGEMV( 'Transpose', K-1, NRHS, -ONE, B,
  319. $ LDB, A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  320. END IF
  321. *
  322. * Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1).
  323. *
  324. KP = -IPIV( K )
  325. IF( KP.NE.K )
  326. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  327. *
  328. KP = -IPIV( K+1 )
  329. IF( KP.NE.K+1 )
  330. $ CALL SSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  331. *
  332. K = K + 2
  333. END IF
  334. *
  335. GO TO 40
  336. 50 CONTINUE
  337. *
  338. ELSE
  339. *
  340. * Solve A*X = B, where A = L*D*L**T.
  341. *
  342. * First solve L*D*X = B, overwriting B with X.
  343. *
  344. * K is the main loop index, increasing from 1 to N in steps of
  345. * 1 or 2, depending on the size of the diagonal blocks.
  346. *
  347. K = 1
  348. 60 CONTINUE
  349. *
  350. * If K > N, exit from loop.
  351. *
  352. IF( K.GT.N )
  353. $ GO TO 80
  354. *
  355. IF( IPIV( K ).GT.0 ) THEN
  356. *
  357. * 1 x 1 diagonal block
  358. *
  359. * Interchange rows K and IPIV(K).
  360. *
  361. KP = IPIV( K )
  362. IF( KP.NE.K )
  363. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  364. *
  365. * Multiply by inv(L(K)), where L(K) is the transformation
  366. * stored in column K of A.
  367. *
  368. IF( K.LT.N )
  369. $ CALL SGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  370. $ LDB, B( K+1, 1 ), LDB )
  371. *
  372. * Multiply by the inverse of the diagonal block.
  373. *
  374. CALL SSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  375. K = K + 1
  376. ELSE
  377. *
  378. * 2 x 2 diagonal block
  379. *
  380. * Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1)
  381. *
  382. KP = -IPIV( K )
  383. IF( KP.NE.K )
  384. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  385. *
  386. KP = -IPIV( K+1 )
  387. IF( KP.NE.K+1 )
  388. $ CALL SSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  389. *
  390. * Multiply by inv(L(K)), where L(K) is the transformation
  391. * stored in columns K and K+1 of A.
  392. *
  393. IF( K.LT.N-1 ) THEN
  394. CALL SGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  395. $ LDB, B( K+2, 1 ), LDB )
  396. CALL SGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  397. $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  398. END IF
  399. *
  400. * Multiply by the inverse of the diagonal block.
  401. *
  402. AKM1K = A( K+1, K )
  403. AKM1 = A( K, K ) / AKM1K
  404. AK = A( K+1, K+1 ) / AKM1K
  405. DENOM = AKM1*AK - ONE
  406. DO 70 J = 1, NRHS
  407. BKM1 = B( K, J ) / AKM1K
  408. BK = B( K+1, J ) / AKM1K
  409. B( K, J ) = ( AK*BKM1-BK ) / DENOM
  410. B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  411. 70 CONTINUE
  412. K = K + 2
  413. END IF
  414. *
  415. GO TO 60
  416. 80 CONTINUE
  417. *
  418. * Next solve L**T *X = B, overwriting B with X.
  419. *
  420. * K is the main loop index, decreasing from N to 1 in steps of
  421. * 1 or 2, depending on the size of the diagonal blocks.
  422. *
  423. K = N
  424. 90 CONTINUE
  425. *
  426. * If K < 1, exit from loop.
  427. *
  428. IF( K.LT.1 )
  429. $ GO TO 100
  430. *
  431. IF( IPIV( K ).GT.0 ) THEN
  432. *
  433. * 1 x 1 diagonal block
  434. *
  435. * Multiply by inv(L**T(K)), where L(K) is the transformation
  436. * stored in column K of A.
  437. *
  438. IF( K.LT.N )
  439. $ CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  440. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  441. *
  442. * Interchange rows K and IPIV(K).
  443. *
  444. KP = IPIV( K )
  445. IF( KP.NE.K )
  446. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  447. K = K - 1
  448. ELSE
  449. *
  450. * 2 x 2 diagonal block
  451. *
  452. * Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  453. * stored in columns K-1 and K of A.
  454. *
  455. IF( K.LT.N ) THEN
  456. CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  457. $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  458. CALL SGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  459. $ LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
  460. $ LDB )
  461. END IF
  462. *
  463. * Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
  464. *
  465. KP = -IPIV( K )
  466. IF( KP.NE.K )
  467. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  468. *
  469. KP = -IPIV( K-1 )
  470. IF( KP.NE.K-1 )
  471. $ CALL SSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  472. *
  473. K = K - 2
  474. END IF
  475. *
  476. GO TO 90
  477. 100 CONTINUE
  478. END IF
  479. *
  480. RETURN
  481. *
  482. * End of SSYTRS_ROOK
  483. *
  484. END