|
- *> \brief \b SPBTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPBTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbtrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbtrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbtrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPBTRF( UPLO, N, KD, AB, LDAB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- * REAL AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPBTRF computes the Cholesky factorization of a real symmetric
- *> positive definite band matrix A.
- *>
- *> The factorization has the form
- *> A = U**T * U, if UPLO = 'U', or
- *> A = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is lower triangular.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB,N)
- *> On entry, the upper or lower triangle of the symmetric band
- *> matrix A, stored in the first KD+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *>
- *> On exit, if INFO = 0, the triangular factor U or L from the
- *> Cholesky factorization A = U**T*U or A = L*L**T of the band
- *> matrix A, in the same storage format as A.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the leading minor of order i is not
- *> positive definite, and the factorization could not be
- *> completed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The band storage scheme is illustrated by the following example, when
- *> N = 6, KD = 2, and UPLO = 'U':
- *>
- *> On entry: On exit:
- *>
- *> * * a13 a24 a35 a46 * * u13 u24 u35 u46
- *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
- *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
- *>
- *> Similarly, if UPLO = 'L' the format of A is as follows:
- *>
- *> On entry: On exit:
- *>
- *> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
- *> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
- *> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
- *>
- *> Array elements marked * are not used by the routine.
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
- *
- * =====================================================================
- SUBROUTINE SPBTRF( UPLO, N, KD, AB, LDAB, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- REAL AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NBMAX, LDWORK
- PARAMETER ( NBMAX = 32, LDWORK = NBMAX+1 )
- * ..
- * .. Local Scalars ..
- INTEGER I, I2, I3, IB, II, J, JJ, NB
- * ..
- * .. Local Arrays ..
- REAL WORK( LDWORK, NBMAX )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SPBTF2, SPOTF2, SSYRK, STRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
- $ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KD.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPBTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment
- *
- NB = ILAENV( 1, 'SPBTRF', UPLO, N, KD, -1, -1 )
- *
- * The block size must not exceed the semi-bandwidth KD, and must not
- * exceed the limit set by the size of the local array WORK.
- *
- NB = MIN( NB, NBMAX )
- *
- IF( NB.LE.1 .OR. NB.GT.KD ) THEN
- *
- * Use unblocked code
- *
- CALL SPBTF2( UPLO, N, KD, AB, LDAB, INFO )
- ELSE
- *
- * Use blocked code
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Compute the Cholesky factorization of a symmetric band
- * matrix, given the upper triangle of the matrix in band
- * storage.
- *
- * Zero the upper triangle of the work array.
- *
- DO 20 J = 1, NB
- DO 10 I = 1, J - 1
- WORK( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- *
- * Process the band matrix one diagonal block at a time.
- *
- DO 70 I = 1, N, NB
- IB = MIN( NB, N-I+1 )
- *
- * Factorize the diagonal block
- *
- CALL SPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
- IF( II.NE.0 ) THEN
- INFO = I + II - 1
- GO TO 150
- END IF
- IF( I+IB.LE.N ) THEN
- *
- * Update the relevant part of the trailing submatrix.
- * If A11 denotes the diagonal block which has just been
- * factorized, then we need to update the remaining
- * blocks in the diagram:
- *
- * A11 A12 A13
- * A22 A23
- * A33
- *
- * The numbers of rows and columns in the partitioning
- * are IB, I2, I3 respectively. The blocks A12, A22 and
- * A23 are empty if IB = KD. The upper triangle of A13
- * lies outside the band.
- *
- I2 = MIN( KD-IB, N-I-IB+1 )
- I3 = MIN( IB, N-I-KD+1 )
- *
- IF( I2.GT.0 ) THEN
- *
- * Update A12
- *
- CALL STRSM( 'Left', 'Upper', 'Transpose',
- $ 'Non-unit', IB, I2, ONE, AB( KD+1, I ),
- $ LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
- *
- * Update A22
- *
- CALL SSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
- $ AB( KD+1-IB, I+IB ), LDAB-1, ONE,
- $ AB( KD+1, I+IB ), LDAB-1 )
- END IF
- *
- IF( I3.GT.0 ) THEN
- *
- * Copy the lower triangle of A13 into the work array.
- *
- DO 40 JJ = 1, I3
- DO 30 II = JJ, IB
- WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
- 30 CONTINUE
- 40 CONTINUE
- *
- * Update A13 (in the work array).
- *
- CALL STRSM( 'Left', 'Upper', 'Transpose',
- $ 'Non-unit', IB, I3, ONE, AB( KD+1, I ),
- $ LDAB-1, WORK, LDWORK )
- *
- * Update A23
- *
- IF( I2.GT.0 )
- $ CALL SGEMM( 'Transpose', 'No Transpose', I2, I3,
- $ IB, -ONE, AB( KD+1-IB, I+IB ),
- $ LDAB-1, WORK, LDWORK, ONE,
- $ AB( 1+IB, I+KD ), LDAB-1 )
- *
- * Update A33
- *
- CALL SSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
- $ WORK, LDWORK, ONE, AB( KD+1, I+KD ),
- $ LDAB-1 )
- *
- * Copy the lower triangle of A13 back into place.
- *
- DO 60 JJ = 1, I3
- DO 50 II = JJ, IB
- AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
- 50 CONTINUE
- 60 CONTINUE
- END IF
- END IF
- 70 CONTINUE
- ELSE
- *
- * Compute the Cholesky factorization of a symmetric band
- * matrix, given the lower triangle of the matrix in band
- * storage.
- *
- * Zero the lower triangle of the work array.
- *
- DO 90 J = 1, NB
- DO 80 I = J + 1, NB
- WORK( I, J ) = ZERO
- 80 CONTINUE
- 90 CONTINUE
- *
- * Process the band matrix one diagonal block at a time.
- *
- DO 140 I = 1, N, NB
- IB = MIN( NB, N-I+1 )
- *
- * Factorize the diagonal block
- *
- CALL SPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
- IF( II.NE.0 ) THEN
- INFO = I + II - 1
- GO TO 150
- END IF
- IF( I+IB.LE.N ) THEN
- *
- * Update the relevant part of the trailing submatrix.
- * If A11 denotes the diagonal block which has just been
- * factorized, then we need to update the remaining
- * blocks in the diagram:
- *
- * A11
- * A21 A22
- * A31 A32 A33
- *
- * The numbers of rows and columns in the partitioning
- * are IB, I2, I3 respectively. The blocks A21, A22 and
- * A32 are empty if IB = KD. The lower triangle of A31
- * lies outside the band.
- *
- I2 = MIN( KD-IB, N-I-IB+1 )
- I3 = MIN( IB, N-I-KD+1 )
- *
- IF( I2.GT.0 ) THEN
- *
- * Update A21
- *
- CALL STRSM( 'Right', 'Lower', 'Transpose',
- $ 'Non-unit', I2, IB, ONE, AB( 1, I ),
- $ LDAB-1, AB( 1+IB, I ), LDAB-1 )
- *
- * Update A22
- *
- CALL SSYRK( 'Lower', 'No Transpose', I2, IB, -ONE,
- $ AB( 1+IB, I ), LDAB-1, ONE,
- $ AB( 1, I+IB ), LDAB-1 )
- END IF
- *
- IF( I3.GT.0 ) THEN
- *
- * Copy the upper triangle of A31 into the work array.
- *
- DO 110 JJ = 1, IB
- DO 100 II = 1, MIN( JJ, I3 )
- WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
- 100 CONTINUE
- 110 CONTINUE
- *
- * Update A31 (in the work array).
- *
- CALL STRSM( 'Right', 'Lower', 'Transpose',
- $ 'Non-unit', I3, IB, ONE, AB( 1, I ),
- $ LDAB-1, WORK, LDWORK )
- *
- * Update A32
- *
- IF( I2.GT.0 )
- $ CALL SGEMM( 'No transpose', 'Transpose', I3, I2,
- $ IB, -ONE, WORK, LDWORK,
- $ AB( 1+IB, I ), LDAB-1, ONE,
- $ AB( 1+KD-IB, I+IB ), LDAB-1 )
- *
- * Update A33
- *
- CALL SSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
- $ WORK, LDWORK, ONE, AB( 1, I+KD ),
- $ LDAB-1 )
- *
- * Copy the upper triangle of A31 back into place.
- *
- DO 130 JJ = 1, IB
- DO 120 II = 1, MIN( JJ, I3 )
- AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
- 120 CONTINUE
- 130 CONTINUE
- END IF
- END IF
- 140 CONTINUE
- END IF
- END IF
- RETURN
- *
- 150 CONTINUE
- RETURN
- *
- * End of SPBTRF
- *
- END
|