You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spbtrf.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. *> \brief \b SPBTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SPBTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbtrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbtrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbtrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SPBTRF( UPLO, N, KD, AB, LDAB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KD, LDAB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL AB( LDAB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SPBTRF computes the Cholesky factorization of a real symmetric
  38. *> positive definite band matrix A.
  39. *>
  40. *> The factorization has the form
  41. *> A = U**T * U, if UPLO = 'U', or
  42. *> A = L * L**T, if UPLO = 'L',
  43. *> where U is an upper triangular matrix and L is lower triangular.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] KD
  63. *> \verbatim
  64. *> KD is INTEGER
  65. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  66. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in,out] AB
  70. *> \verbatim
  71. *> AB is REAL array, dimension (LDAB,N)
  72. *> On entry, the upper or lower triangle of the symmetric band
  73. *> matrix A, stored in the first KD+1 rows of the array. The
  74. *> j-th column of A is stored in the j-th column of the array AB
  75. *> as follows:
  76. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  77. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  78. *>
  79. *> On exit, if INFO = 0, the triangular factor U or L from the
  80. *> Cholesky factorization A = U**T*U or A = L*L**T of the band
  81. *> matrix A, in the same storage format as A.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDAB
  85. *> \verbatim
  86. *> LDAB is INTEGER
  87. *> The leading dimension of the array AB. LDAB >= KD+1.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] INFO
  91. *> \verbatim
  92. *> INFO is INTEGER
  93. *> = 0: successful exit
  94. *> < 0: if INFO = -i, the i-th argument had an illegal value
  95. *> > 0: if INFO = i, the leading minor of order i is not
  96. *> positive definite, and the factorization could not be
  97. *> completed.
  98. *> \endverbatim
  99. *
  100. * Authors:
  101. * ========
  102. *
  103. *> \author Univ. of Tennessee
  104. *> \author Univ. of California Berkeley
  105. *> \author Univ. of Colorado Denver
  106. *> \author NAG Ltd.
  107. *
  108. *> \date December 2016
  109. *
  110. *> \ingroup realOTHERcomputational
  111. *
  112. *> \par Further Details:
  113. * =====================
  114. *>
  115. *> \verbatim
  116. *>
  117. *> The band storage scheme is illustrated by the following example, when
  118. *> N = 6, KD = 2, and UPLO = 'U':
  119. *>
  120. *> On entry: On exit:
  121. *>
  122. *> * * a13 a24 a35 a46 * * u13 u24 u35 u46
  123. *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
  124. *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
  125. *>
  126. *> Similarly, if UPLO = 'L' the format of A is as follows:
  127. *>
  128. *> On entry: On exit:
  129. *>
  130. *> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
  131. *> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
  132. *> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
  133. *>
  134. *> Array elements marked * are not used by the routine.
  135. *> \endverbatim
  136. *
  137. *> \par Contributors:
  138. * ==================
  139. *>
  140. *> Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
  141. *
  142. * =====================================================================
  143. SUBROUTINE SPBTRF( UPLO, N, KD, AB, LDAB, INFO )
  144. *
  145. * -- LAPACK computational routine (version 3.7.0) --
  146. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  147. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148. * December 2016
  149. *
  150. * .. Scalar Arguments ..
  151. CHARACTER UPLO
  152. INTEGER INFO, KD, LDAB, N
  153. * ..
  154. * .. Array Arguments ..
  155. REAL AB( LDAB, * )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. REAL ONE, ZERO
  162. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  163. INTEGER NBMAX, LDWORK
  164. PARAMETER ( NBMAX = 32, LDWORK = NBMAX+1 )
  165. * ..
  166. * .. Local Scalars ..
  167. INTEGER I, I2, I3, IB, II, J, JJ, NB
  168. * ..
  169. * .. Local Arrays ..
  170. REAL WORK( LDWORK, NBMAX )
  171. * ..
  172. * .. External Functions ..
  173. LOGICAL LSAME
  174. INTEGER ILAENV
  175. EXTERNAL LSAME, ILAENV
  176. * ..
  177. * .. External Subroutines ..
  178. EXTERNAL SGEMM, SPBTF2, SPOTF2, SSYRK, STRSM, XERBLA
  179. * ..
  180. * .. Intrinsic Functions ..
  181. INTRINSIC MIN
  182. * ..
  183. * .. Executable Statements ..
  184. *
  185. * Test the input parameters.
  186. *
  187. INFO = 0
  188. IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
  189. $ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
  190. INFO = -1
  191. ELSE IF( N.LT.0 ) THEN
  192. INFO = -2
  193. ELSE IF( KD.LT.0 ) THEN
  194. INFO = -3
  195. ELSE IF( LDAB.LT.KD+1 ) THEN
  196. INFO = -5
  197. END IF
  198. IF( INFO.NE.0 ) THEN
  199. CALL XERBLA( 'SPBTRF', -INFO )
  200. RETURN
  201. END IF
  202. *
  203. * Quick return if possible
  204. *
  205. IF( N.EQ.0 )
  206. $ RETURN
  207. *
  208. * Determine the block size for this environment
  209. *
  210. NB = ILAENV( 1, 'SPBTRF', UPLO, N, KD, -1, -1 )
  211. *
  212. * The block size must not exceed the semi-bandwidth KD, and must not
  213. * exceed the limit set by the size of the local array WORK.
  214. *
  215. NB = MIN( NB, NBMAX )
  216. *
  217. IF( NB.LE.1 .OR. NB.GT.KD ) THEN
  218. *
  219. * Use unblocked code
  220. *
  221. CALL SPBTF2( UPLO, N, KD, AB, LDAB, INFO )
  222. ELSE
  223. *
  224. * Use blocked code
  225. *
  226. IF( LSAME( UPLO, 'U' ) ) THEN
  227. *
  228. * Compute the Cholesky factorization of a symmetric band
  229. * matrix, given the upper triangle of the matrix in band
  230. * storage.
  231. *
  232. * Zero the upper triangle of the work array.
  233. *
  234. DO 20 J = 1, NB
  235. DO 10 I = 1, J - 1
  236. WORK( I, J ) = ZERO
  237. 10 CONTINUE
  238. 20 CONTINUE
  239. *
  240. * Process the band matrix one diagonal block at a time.
  241. *
  242. DO 70 I = 1, N, NB
  243. IB = MIN( NB, N-I+1 )
  244. *
  245. * Factorize the diagonal block
  246. *
  247. CALL SPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
  248. IF( II.NE.0 ) THEN
  249. INFO = I + II - 1
  250. GO TO 150
  251. END IF
  252. IF( I+IB.LE.N ) THEN
  253. *
  254. * Update the relevant part of the trailing submatrix.
  255. * If A11 denotes the diagonal block which has just been
  256. * factorized, then we need to update the remaining
  257. * blocks in the diagram:
  258. *
  259. * A11 A12 A13
  260. * A22 A23
  261. * A33
  262. *
  263. * The numbers of rows and columns in the partitioning
  264. * are IB, I2, I3 respectively. The blocks A12, A22 and
  265. * A23 are empty if IB = KD. The upper triangle of A13
  266. * lies outside the band.
  267. *
  268. I2 = MIN( KD-IB, N-I-IB+1 )
  269. I3 = MIN( IB, N-I-KD+1 )
  270. *
  271. IF( I2.GT.0 ) THEN
  272. *
  273. * Update A12
  274. *
  275. CALL STRSM( 'Left', 'Upper', 'Transpose',
  276. $ 'Non-unit', IB, I2, ONE, AB( KD+1, I ),
  277. $ LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
  278. *
  279. * Update A22
  280. *
  281. CALL SSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
  282. $ AB( KD+1-IB, I+IB ), LDAB-1, ONE,
  283. $ AB( KD+1, I+IB ), LDAB-1 )
  284. END IF
  285. *
  286. IF( I3.GT.0 ) THEN
  287. *
  288. * Copy the lower triangle of A13 into the work array.
  289. *
  290. DO 40 JJ = 1, I3
  291. DO 30 II = JJ, IB
  292. WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
  293. 30 CONTINUE
  294. 40 CONTINUE
  295. *
  296. * Update A13 (in the work array).
  297. *
  298. CALL STRSM( 'Left', 'Upper', 'Transpose',
  299. $ 'Non-unit', IB, I3, ONE, AB( KD+1, I ),
  300. $ LDAB-1, WORK, LDWORK )
  301. *
  302. * Update A23
  303. *
  304. IF( I2.GT.0 )
  305. $ CALL SGEMM( 'Transpose', 'No Transpose', I2, I3,
  306. $ IB, -ONE, AB( KD+1-IB, I+IB ),
  307. $ LDAB-1, WORK, LDWORK, ONE,
  308. $ AB( 1+IB, I+KD ), LDAB-1 )
  309. *
  310. * Update A33
  311. *
  312. CALL SSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
  313. $ WORK, LDWORK, ONE, AB( KD+1, I+KD ),
  314. $ LDAB-1 )
  315. *
  316. * Copy the lower triangle of A13 back into place.
  317. *
  318. DO 60 JJ = 1, I3
  319. DO 50 II = JJ, IB
  320. AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
  321. 50 CONTINUE
  322. 60 CONTINUE
  323. END IF
  324. END IF
  325. 70 CONTINUE
  326. ELSE
  327. *
  328. * Compute the Cholesky factorization of a symmetric band
  329. * matrix, given the lower triangle of the matrix in band
  330. * storage.
  331. *
  332. * Zero the lower triangle of the work array.
  333. *
  334. DO 90 J = 1, NB
  335. DO 80 I = J + 1, NB
  336. WORK( I, J ) = ZERO
  337. 80 CONTINUE
  338. 90 CONTINUE
  339. *
  340. * Process the band matrix one diagonal block at a time.
  341. *
  342. DO 140 I = 1, N, NB
  343. IB = MIN( NB, N-I+1 )
  344. *
  345. * Factorize the diagonal block
  346. *
  347. CALL SPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
  348. IF( II.NE.0 ) THEN
  349. INFO = I + II - 1
  350. GO TO 150
  351. END IF
  352. IF( I+IB.LE.N ) THEN
  353. *
  354. * Update the relevant part of the trailing submatrix.
  355. * If A11 denotes the diagonal block which has just been
  356. * factorized, then we need to update the remaining
  357. * blocks in the diagram:
  358. *
  359. * A11
  360. * A21 A22
  361. * A31 A32 A33
  362. *
  363. * The numbers of rows and columns in the partitioning
  364. * are IB, I2, I3 respectively. The blocks A21, A22 and
  365. * A32 are empty if IB = KD. The lower triangle of A31
  366. * lies outside the band.
  367. *
  368. I2 = MIN( KD-IB, N-I-IB+1 )
  369. I3 = MIN( IB, N-I-KD+1 )
  370. *
  371. IF( I2.GT.0 ) THEN
  372. *
  373. * Update A21
  374. *
  375. CALL STRSM( 'Right', 'Lower', 'Transpose',
  376. $ 'Non-unit', I2, IB, ONE, AB( 1, I ),
  377. $ LDAB-1, AB( 1+IB, I ), LDAB-1 )
  378. *
  379. * Update A22
  380. *
  381. CALL SSYRK( 'Lower', 'No Transpose', I2, IB, -ONE,
  382. $ AB( 1+IB, I ), LDAB-1, ONE,
  383. $ AB( 1, I+IB ), LDAB-1 )
  384. END IF
  385. *
  386. IF( I3.GT.0 ) THEN
  387. *
  388. * Copy the upper triangle of A31 into the work array.
  389. *
  390. DO 110 JJ = 1, IB
  391. DO 100 II = 1, MIN( JJ, I3 )
  392. WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
  393. 100 CONTINUE
  394. 110 CONTINUE
  395. *
  396. * Update A31 (in the work array).
  397. *
  398. CALL STRSM( 'Right', 'Lower', 'Transpose',
  399. $ 'Non-unit', I3, IB, ONE, AB( 1, I ),
  400. $ LDAB-1, WORK, LDWORK )
  401. *
  402. * Update A32
  403. *
  404. IF( I2.GT.0 )
  405. $ CALL SGEMM( 'No transpose', 'Transpose', I3, I2,
  406. $ IB, -ONE, WORK, LDWORK,
  407. $ AB( 1+IB, I ), LDAB-1, ONE,
  408. $ AB( 1+KD-IB, I+IB ), LDAB-1 )
  409. *
  410. * Update A33
  411. *
  412. CALL SSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
  413. $ WORK, LDWORK, ONE, AB( 1, I+KD ),
  414. $ LDAB-1 )
  415. *
  416. * Copy the upper triangle of A31 back into place.
  417. *
  418. DO 130 JJ = 1, IB
  419. DO 120 II = 1, MIN( JJ, I3 )
  420. AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
  421. 120 CONTINUE
  422. 130 CONTINUE
  423. END IF
  424. END IF
  425. 140 CONTINUE
  426. END IF
  427. END IF
  428. RETURN
  429. *
  430. 150 CONTINUE
  431. RETURN
  432. *
  433. * End of SPBTRF
  434. *
  435. END