|
- *> \brief \b SOPMTR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SOPMTR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sopmtr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sopmtr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sopmtr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS, UPLO
- * INTEGER INFO, LDC, M, N
- * ..
- * .. Array Arguments ..
- * REAL AP( * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SOPMTR overwrites the general real M-by-N matrix C with
- *>
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': Q * C C * Q
- *> TRANS = 'T': Q**T * C C * Q**T
- *>
- *> where Q is a real orthogonal matrix of order nq, with nq = m if
- *> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
- *> nq-1 elementary reflectors, as returned by SSPTRD using packed
- *> storage:
- *>
- *> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
- *>
- *> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**T from the Left;
- *> = 'R': apply Q or Q**T from the Right.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangular packed storage used in previous
- *> call to SSPTRD;
- *> = 'L': Lower triangular packed storage used in previous
- *> call to SSPTRD.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, apply Q;
- *> = 'T': Transpose, apply Q**T.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is REAL array, dimension
- *> (M*(M+1)/2) if SIDE = 'L'
- *> (N*(N+1)/2) if SIDE = 'R'
- *> The vectors which define the elementary reflectors, as
- *> returned by SSPTRD. AP is modified by the routine but
- *> restored on exit.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (M-1) if SIDE = 'L'
- *> or (N-1) if SIDE = 'R'
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by SSPTRD.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is REAL array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension
- *> (N) if SIDE = 'L'
- *> (M) if SIDE = 'R'
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS, UPLO
- INTEGER INFO, LDC, M, N
- * ..
- * .. Array Arguments ..
- REAL AP( * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL FORWRD, LEFT, NOTRAN, UPPER
- INTEGER I, I1, I2, I3, IC, II, JC, MI, NI, NQ
- REAL AII
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- UPPER = LSAME( UPLO, 'U' )
- *
- * NQ is the order of Q
- *
- IF( LEFT ) THEN
- NQ = M
- ELSE
- NQ = N
- END IF
- IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SOPMTR', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Q was determined by a call to SSPTRD with UPLO = 'U'
- *
- FORWRD = ( LEFT .AND. NOTRAN ) .OR.
- $ ( .NOT.LEFT .AND. .NOT.NOTRAN )
- *
- IF( FORWRD ) THEN
- I1 = 1
- I2 = NQ - 1
- I3 = 1
- II = 2
- ELSE
- I1 = NQ - 1
- I2 = 1
- I3 = -1
- II = NQ*( NQ+1 ) / 2 - 1
- END IF
- *
- IF( LEFT ) THEN
- NI = N
- ELSE
- MI = M
- END IF
- *
- DO 10 I = I1, I2, I3
- IF( LEFT ) THEN
- *
- * H(i) is applied to C(1:i,1:n)
- *
- MI = I
- ELSE
- *
- * H(i) is applied to C(1:m,1:i)
- *
- NI = I
- END IF
- *
- * Apply H(i)
- *
- AII = AP( II )
- AP( II ) = ONE
- CALL SLARF( SIDE, MI, NI, AP( II-I+1 ), 1, TAU( I ), C, LDC,
- $ WORK )
- AP( II ) = AII
- *
- IF( FORWRD ) THEN
- II = II + I + 2
- ELSE
- II = II - I - 1
- END IF
- 10 CONTINUE
- ELSE
- *
- * Q was determined by a call to SSPTRD with UPLO = 'L'.
- *
- FORWRD = ( LEFT .AND. .NOT.NOTRAN ) .OR.
- $ ( .NOT.LEFT .AND. NOTRAN )
- *
- IF( FORWRD ) THEN
- I1 = 1
- I2 = NQ - 1
- I3 = 1
- II = 2
- ELSE
- I1 = NQ - 1
- I2 = 1
- I3 = -1
- II = NQ*( NQ+1 ) / 2 - 1
- END IF
- *
- IF( LEFT ) THEN
- NI = N
- JC = 1
- ELSE
- MI = M
- IC = 1
- END IF
- *
- DO 20 I = I1, I2, I3
- AII = AP( II )
- AP( II ) = ONE
- IF( LEFT ) THEN
- *
- * H(i) is applied to C(i+1:m,1:n)
- *
- MI = M - I
- IC = I + 1
- ELSE
- *
- * H(i) is applied to C(1:m,i+1:n)
- *
- NI = N - I
- JC = I + 1
- END IF
- *
- * Apply H(i)
- *
- CALL SLARF( SIDE, MI, NI, AP( II ), 1, TAU( I ),
- $ C( IC, JC ), LDC, WORK )
- AP( II ) = AII
- *
- IF( FORWRD ) THEN
- II = II + NQ - I + 1
- ELSE
- II = II - NQ + I - 2
- END IF
- 20 CONTINUE
- END IF
- RETURN
- *
- * End of SOPMTR
- *
- END
|